
Towards Understanding Fairness and its
Composition in Ensemble Machine Learning

Usman Gohar
Dept. of Computer Science

Iowa State University
Ames, IA, USA

ugohar@iastate.edu

Sumon Biswas
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

sumonb@cs.cmu.edu

Hridesh Rajan
Dept. of Computer Science

Iowa State University
Ames, IA, USA

hridesh@iastate.edu

Abstract— Machine Learning (ML) software has been widely
adopted in modern society, with reported fairness implications for
minority groups based on race, sex, age, etc. Many recent works
have proposed methods to measure and mitigate algorithmic bias
in ML models. The existing approaches focus on single classifier-
based ML models. However, real-world ML models are often
composed of multiple independent or dependent learners in an
ensemble (e.g., Random Forest), where the fairness composes in a
non-trivial way. How does fairness compose in ensembles? What
are the fairness impacts of the learners on the ultimate fairness
of the ensemble? Can fair learners result in an unfair ensemble?
Furthermore, studies have shown that hyperparameters influence
the fairness of ML models. Ensemble hyperparameters are more
complex since they affect how learners are combined in different
categories of ensembles. Understanding the impact of ensemble
hyperparameters on fairness will help programmers design fair
ensembles. Today, we do not understand these fully for different
ensemble algorithms. In this paper, we comprehensively study
popular real-world ensembles: Bagging, Boosting, Stacking, and
Voting. We have developed a benchmark of 168 ensemble models
collected from Kaggle on four popular fairness datasets. We
use existing fairness metrics to understand the composition of
fairness. Our results show that ensembles can be designed to be
fairer without using mitigation techniques. We also identify the
interplay between fairness composition and data characteristics
to guide fair ensemble design. Finally, our benchmark can be
leveraged for further research on fair ensembles. To the best of
our knowledge, this is one of the first and largest studies on
fairness composition in ensembles yet presented in the literature.

Index Terms—fairness, ensemble, machine learning, models

I. INTRODUCTION

Machine learning (ML) is ubiquitous in modern software

today. Due to the black-box [1] nature of ML algorithms and

its applications in critical decision-making [2, 3], fairness in

ML software has become a huge concern. Measuring ML

fairness [4–7] and mitigating the discrimination [5, 8, 9] has

been studied extensively. Recent work in software engineering

has shown the need to produce fair software and detect bias

in complex ML software environments [10–13].

Prior research has mostly focused on fairness in stan-

dalone classifiers (e.g., Logistic Regression, SVM) [1, 14, 15].

However, a class of ML models called ensemble models are

becoming increasingly important in practice today due to their

superior performance across a multitude of ML & real-life

challenges [16–20], and better generalization on unseen data,

especially in smaller datasets [18, 21, 22]. Ensemble models

combine the predictions of multiple base learners to make the

final prediction, e.g., Random Forest uses a large number of

decision trees, with the majority class being the final output.

Ensemble models are the most mentioned ML algorithms on

Kaggle [23], and in previous SE works on fairness, ensemble

models comprise more than 80% of the total models [12, 13].

Like traditional ML models, ensemble models can also suffer

from unfairness problem that discriminates against population

subgroups based on race, gender, etc. Although many fairness

mitigation techniques [24, 25] exist, they do not always

generalize well [26–28]. Therefore, if we better understand

the fairness composition in ensembles, we can design fair

ensemble models without applying mitigation techniques. In

this paper, we have conducted an empirical study to understand

the composition of fairness in ensembles and the interplay of

their properties with fairness.

Recently, multiple works have shown that ensembles can

be leveraged to enhance fairness and mitigate bias in ML

models [28–30]. Grgic-Hlaca et al. first explored fairness

properties of random selection ensemble, only theoretically

[31]. Bower et al. explored how fairness propagates through a

multi-stage decision process like hiring [15]. Similarly, Dwork

et al. introduced a framework to understand the composition

of fairness in ensembles that only utilize AND, OR operators

to make a decision, e.g., two credit bureaus’ (AND) report a

score to determine loan eligibility [4]. Feffer et al. studied how

ensembles and bias mitigators can be combined using modu-

larity to improve stability in bias mitigation [28]. Therefore,

it is evident that fairness in ensembles and their composition

is non-trivial. Moreover, prior works in SE have shown the

impact of training processes such as hyperparameter optimiza-

tion, data transformation, etc., on the fairness of ML software

[12, 25, 32]. We postulate that ensemble hyperparameters also

impact unfairness in ensembles, and failure to study them can

amplify bias. However, ensemble hyperparameters are differ-

ent than typical ML model hyperparameters as they dictate

the design of the ensemble, e.g., number of learners, learning

method, etc. However, no empirical study has been conducted

to understand fairness composition in ensembles and the effect

of their hyperparameter space on fairness. To this end, we have

created a benchmark of 168 real-world ensemble models from

1537

2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE)

1558-1225/23/$31.00 ©2023 IEEE
DOI 10.1109/ICSE48619.2023.00133

Kaggle and designed experiments to measure their fairness.

We analyze fairness composition in ensemble criteria such

as parallel and sequential ensembles, homogeneity of models,

and different ensemble methods such as bagging, boosting,

voting, stacking, etc., and all the ensemble classifiers available

in the popular Scikit-learn [33]. Specifically, we answer the

following overarching research questions:

• RQ1: What are the fairness measures of various ensem-
ble techniques?

• RQ2: How does fairness compose in ensemble models?
• RQ3: Can ensemble-related hyperparameters be chosen

to design fair ensemble models?

To the best of our knowledge, this is the first work to

experimentally evaluate the fairness composition in popular

ensembles and elicit fair ensemble design considerations. Our

results show that fairness in ensembles composes in the base

learners, and fair ensemble models can be built by carefully

considering the composition. The analyses also identify learn-

ers that cause fairness problems which software developers

can leverage to develop frameworks to measure fairness in

base learners and encourage transparency. We also identify

and explore ensemble-related hyperparameters to design fair

ML models for each ensemble type. Lastly, we provide a

comprehensive review of fairness composition in ensembles

that will help direct future research in the area. Overall, the

following are the key contributions of this paper:

• Explored fairness composition and its interplay with data

characteristics and individual learners to mitigate bias.

• Empirically evaluate fairness patterns of popular ML

ensemble models.

• We identified ensemble design considerations and hyper-

parameters that would guide developers in fair ensemble

design and mitigate inherent unfairness effectively.

• A comprehensive fairness benchmark of popular en-

sembles that can be leveraged for further research on

building fairness-aware ensembles. The benchmark, code,

and experimental results are available: https://github.com/

UsmanGohar/FairEnsemble

The rest of the paper is organized as follows: §II describes

the motivation of our work and the background on ensembles.

In §III, we discuss the methodology for our study, includ-

ing benchmark collection, datasets and fairness and accuracy

measures used, and finally, the experiment setup & design. In

§IV, we discuss the state of fairness in ensembles (RQ1) and

how it composes (RQ2), §V discusses the design criteria to

improve fairness in ensembles (RQ3). Finally, we discuss the

implications of our work in §VI, threats to validity in §VII,

related works in §VIII and then present the conclusion in §IX.

II. MOTIVATION AND BACKGROUND

In this section, we use a motivating example to illustrate

the complexity of fairness composition in ensembles and the

need to study bias induced by certain ensemble parameters.

A. Motivating example

Ensemble models are widely deployed to win competitions

in online communities like Kaggle due to their superior

performances [16–20, 23]. In prior SE works on fairness

[12, 13], more than 80% of the models were ensemble based.

However, those works did not consider fairness composition of

individual learners, its effect on the fairness of ensembles, and

the inherent bias in ensemble methods, which is non-trivial.

Hence, not studying fairness composition in ensembles fails

to capture the complete fairness of an ML pipeline. Consider

the code snippet below of a top-performing model (Voting

ensemble) from Kaggle, which is used to predict the income

of an individual (German Credit dataset).

1 models = []
2 models . append (('LGR ' , L o g i s t i c R e g r e s s i o n ()))
3 models . append (('LDA ' , L i n e a r D i s c r i m i n a n t A n a l y s i s ()))
4 models . append (('KNN ' , K N e i g h b o r s C l a s s i f i e r ()))
5 models . append (('CART ' , D e c i s i o n T r e e C l a s s i f i e r ()))
6 models . append (('NB ' , GaussianNB ()))
7 models . append ((' RF ' , R a n d o m F o r e s t C l a s s i f i e r ()))
8 models . append (('SVM ' , SVC(gamma= ' a u t o '))
9 models . append (('XGBM ' , X G B C l a s s i f i e r ()))

10 models . append (('LGBM ' , LGBMClass i f ie r ()))
11 model = V o t i n g C l a s s i f i e r (e s t i m a t o r s =models , v o t i n g = ' s o f t ')
12 model . f i t (X t r a i n , y t r a i n)
13 y pred = model . p r e d i c t (X t e s t)

A voting ensemble is a type of heterogeneous ensemble that

combines the predictions of dissimilar learners. It comprises

multiple learners (lines 2-10) and uses a voting mechanism

(line 11) to make the prediction. In soft voting, the class label

(1 or 0) with the higher average probability from the learners

is chosen as the final prediction. We found that this ensemble

is biased towards female applicants (Protected attribute: Sex)

in terms of statistical parity difference (SPD:-0.203). In this

example, before training the ensemble, a developer must

decide the number of learners, select which learners to use,

and the voting type (soft/hard). However, we found that ML

libraries do not provide any fairness recommendations for

building ensembles. Do these learners introduce unfairness in

the predictions? How does the number of learners impact the

fairness of the ensemble? More importantly, we observed that

individual learners have their own fairness measures when

analyzed in isolation but might result in an unfair model

when used in an ensemble. For instance, our analysis shows

that dropping XGBClassifier and LGBMClassifier (lines 9-

10) can improve fairness by 27% (SPD:-0.148). Interestingly,

we discuss later how these two learners are inherently fair

themselves and not responsible for the unfairness.

Furthermore, prior research has shown the impact of hyper-

parameters on fairness [12, 25, 32]. Ensemble hyperparameters

dictate how ensembles combine learners for final prediction.

In this example, if a developer used “hard” voting (line 11),

the fairness of the ensemble would improve (SPD: -0.195).

Similarly, some of these hyperparameters also affect the design

properties of the learners, which impacts fairness. XGBoost
(line 9) is another example of an ensemble (boosting). Boost-

ing builds an ensemble of trees (learners) using various meth-

ods. What properties of these trees (e.g., tree depth, number

of features, etc.) and the learning method impact the overall

1538

TABLE I: Types of ensemble models used in our experiments

Categories Ensemble Types Algorithms Composition Classifiers

Sequential Boosting
Construct n homogeneous estimators sequentially that improve predictions

based on the previous estimator’s incorrect predictions

Homogeneous XGBoost
Homogeneous AdaBoost
Homogeneous Gradient Boosting

Parallel
Bagging

Construct n parallel homogeneous models that are aggregated using

averaging

Homogeneous Random Forest
Homogeneous ExtraTrees
Homogeneous Bagging Classifier

Voting

Construct a list of n heterogeneous user-specified weighted classifiers

that are aggregated using majority voting or argmax Heterogeneous Voting Classifier

Stacking

Construct a list of n heterogeneous classifiers as base learners and a

meta-classifier to decide weights for each learner Heterogeneous Stacking Classifier

fairness of a boosting ensemble? Exploring these parameters

will help developers understand how to design fair ensembles.

Therefore, in addition to understanding fairness composition

in the learners, it is equally important to understand how the

design of ensembles using these parameters impacts fairness.

B. Ensemble learning in ML software

Ensemble models are a class of ML classifiers where the

predictions from different learners (models) are pooled using

a combination method (voting, average, random, etc.) to make

the final predictions. In the motivational example above, we

only discussed a single type of ensemble. Categories of

ensembles are based on homogeneity, learning technique, and

ensemble types. All the ensemble types covered in our study

and the corresponding classifiers are given in Table I. There are

mainly two categories of ensembles: Sequential and Parallel.

Sequential Ensembles. These ensembles sequentially gen-

erate base learners. Each learner in this ensemble depends on

the previous learners in the sequence because the next learner

attempts to correct the wrong predictions from the previous

learner and so on [34]. AdaBoost is an example of a sequential

model where it reweighs (higher) misclassified examples.

Parallel Ensembles. Parallel ensembles train individual base

learners in parallel and independently of each other. These

learners are combined using techniques such as bagging (a

random sample of data with replacement) or voting, which

encourages improved variance [34] e.g., Random Forest.
Homogeneity of ensembles. Ensemble methods that use

single-type base learners are called homogeneous models [35].

These individual learners are combined to generate the final

result, e.g., XGBoost and AdaBoost use decision trees. By

contrast, heterogeneous ensembles combine the predictions of

dissimilar individual learners [35]. A popular heterogeneous

ensemble method is Voting. Finally, ensemble method types

are divided into Boosting, Bagging, Voting, & Stacking [33].

III. METHODOLOGY

In this section, we discuss the benchmark collection process,

the datasets, and fairness and accuracy measures. Finally, we

describe the experimental design and setup.

A. Benchmark Collection

For our experiments, we collected ensemble models from

Kaggle [36] for datasets that have been used in prior fairness

literature [12, 28, 37]. Unlike these works, we only collect

TABLE II: Summary of the datasets and the number of models

collected for each in the benchmark

Datasets PA Size #XGB #ADB #GBC #RF #ET #STK #VT Total
Adult Census sex 32561 6 6 6 6 6 1 2 33
Titanic ML sex 891 6 6 6 6 6 6 6 42

Bank Marketing age 41118 6 6 6 6 2 1 2 29
German Credit sex 1000 6 1 1 6 1 1 1 17

XGB: XGBoost, ADB: AdaBoost, GBC: Gradient Boosting , RF: Random Forest,
ET: Extra Trees, STK: Stacking, VT: Voting

ensemble-based models for evaluation. Specifically, we collect

all ensemble classifiers available via the popular scikit-learn

library [33]. We follow a similar benchmark collection process

as in [13]. Table II summarizes the datasets and the classifiers

in the benchmark.

For each dataset, we collected Kaggle kernels for each en-

semble type in Table I and classifiers available in scikit-learn.

We filter these kernels based on four-step filtering criteria: 1)
it should contain the predictive model (some kernels focus on

data exploration only), 2) protected attribute is included in the

training data, 3) at least five up-votes, and 4) ranked by up-

votes. We used Kaggle API to collect these models and pass

them through the filtering criteria. Finally, we select the top 6

models for each ensemble classifier from each dataset. In total,

we created a benchmark of 168 ensembles across four datasets.

We could not find certain classifiers on Kaggle for datasets like

German Credit. To handle those, we use default models from

scikit-learn to ensure we can evaluate across different datasets.

The number of models mined is shown in Table II. Next, we

present an overview of the datasets used in our benchmark.

Adult Census. The dataset contains income and personal in-

formation about individuals [38]. We used sex as the protected

attribute and male as the privileged class. The classification

task predicts if a person makes over $50,000 in annual income.

Titanic. The dataset contains passenger data, such as gender,

cabin class, etc., and is pre-split into train & test sets; however,

the test set does not contain any instance of a male passenger

surviving [39]. Hence, we only use the training set, with

gender as the protected attribute and Female as the privileged

class. The prediction task is whether a passenger survives.

Bank Marketing. The dataset contains bank customers’

personal information such as age, job type, etc. [40]. The

protected attribute is age, where age > 25 is considered

privileged class and age < 25 as unprivileged [13]. The

prediction task determines whether a client will subscribe to

1539

a term deposit.

German Credit. This dataset contains personal and financial

information about individuals who apply for loans at a bank

[41]. We used the processed dataset [42] since most models in

our benchmark used it. This version has nine attributes, such

as sex, credit amount, etc. We choose sex as the protected

attribute and male as the privileged class. The prediction task

is whether an individual is a credit risk.

B. Measures

Multiple quantitative fairness and accuracy measures are

available to evaluate a model. We use measures that have been

previously used in literature [11, 13]. Let D = (T, S, Y) be a

dataset where T is the training set, S is the protected attribute

(S = 1, if privileged group (p), else S = 0 (up)) and Y is the

classification label (Y = 1 if favorable label, else Y = 0). Let

Ŷ denote the prediction of an ML model. Next, we define our

measures in terms of these notations.

1) Accuracy Metrics: We evaluate the performance of the

models using accuracy and F1 metrics as defined below:

Accuracy = (true positive+ true negative)/total

F1 = 2 ∗ (precision ∗ recall)/(precision+ recall)

where recall: TP/(TP +FN), precision: TP/(TP +FP)

2) Fairness Measures: Broadly, fairness metrics are

divided into three categories [43]. We have selected a

subset of these metrics representing the three categories

without being exhaustive. Furthermore, we have followed the

recommendations of Friedler et al. [13] in terms of metrics

selection.

Group fairness metrics: Group fairness means similar predic-

tive outcomes for protected attributes, e.g., race (Asian/White)

on a group level.

Equal Opportunity Difference (EOD): This is defined as the

difference of true-positive rates (TPR) between privileged and

unprivileged groups [44].

EOD = TPRup − TPRp

where TPR: TP/(TP + FN), FPR: FP/(FP + TN)

Average Odds Difference (AOD): This is defined as the mean

of false-positive rate (FPR) difference and true-positive rate

difference between unprivileged and privileged groups [27].

AOD = [(FPRup − FPRp) + (TPRup − TPRp)]/2

Disparate Impact (DI): This is defined as the ratio of the

probability of unprivileged group vs. privileged group getting

a favorable prediction [7]

DI = P [Ŝ = 1|Y = 0]/P [Ŝ = 1|Y = 1]

We convert Disparate Impact (DI) to log scale to improve

readability compared with other metrics.

Statistical Parity Difference (SPD): This is defined similar to

DI but uses the difference between the probabilities. [45].

SPD = P [Ŝ = 1|Y = 0]− P [Ŝ = 1|Y = 1]

Individual fairness metrics:
Theil Index (TI): It measures both the group and individual

fairness [6]. It is defined using the following equation:

TI =
∑n

i=1
bi
ā ln

bi
ā , where bi = ŝi − si + 1.

C. Experiment Design & Setup

Each ensemble model has specific requirements for training

(e.g., XGBoost can handle Null values, but Random Forest
cannot etc.) that we need to handle before we can evaluate

them. We used the same preprocessing steps across all the

kernels and datasets to ensure consistent comparison. Next,

we evaluated the accuracy and fairness of base learners and

the final ensemble level and analyzed the results.

For our data preprocessing, we start by converting all non-

numerical features to categorical data, i.e., Binary or Ordinal
(e.g., male: 1, female: 0 or non-binary levels, like Marital-
Status to Divorced: 0, Married: 1, Single: 2 etc.). Next, we

remove missing values from our datasets and convert contin-

uous sensitive attributes to categorical (e.g., age > 25: 1, age

< 25 :0 corresponding to old and young, respectively). These

preprocessing steps are necessary for most ensembles and the

AIF360 toolkit. We denote the privileged and unprivileged

groups and the favorable label for each dataset separately. For

example, in Titanic dataset, male is the unprivileged group,

and the favorable label is Survivied: 1 i.e., the individual

survived the titanic crash. The groups and the labels have

been chosen as seen before in literature [13, 46]. Finally,

the dataset is shuffled and split into train and test sets using

a 70% − 30% split. For each dataset, we have selected the

top 6 kernels by upvotes. We run the preprocessing steps

discussed before training the model to evaluate based on

accuracy and fairness metrics. We use five fairness metrics

and two accuracy measures to generate results for each model.

These experiments are repeated ten times, and the mean is

reported [11]. We used the IBM AIF 360 Fairness Toolkit to

calculate the fairness metrics. Finally, a non-zero value for

fairness metrics suggests a bias in the model. A positive value

of a fairness metric suggests the model is biased against the

privileged group and vice-versa.

IV. FAIRNESS IN ENSEMBLES AND ITS COMPOSITION

In this section, we explore the state of fairness in ensembles

and its composition in all popular ensemble methods.

A. State of fairness in ensemble models

Before understanding the composition of fairness in ensem-

bles, we first investigate how different ensemble techniques

impact fairness (RQ1). Are certain ensemble classifiers more

unfair? Does the architecture of an ensemble method (stacking,

boosting, etc.) contribute to fairness? Does any particular

ensemble classifier exhibit a better fairness-accuracy trade-

off? To answer these questions, we experiment to evaluate the

1540

TABLE III: Fairness and accuracy comparison of all ensemble ML classifiers across the datasets in our benchmark. The ranks

were calculated using the Scott-Knott test [47]. Each cell depicts the median score; Darker , lighter , light , lightest and

white colored cell denotes the first, the second, the third, fourth, and lowest rank, respectively. The rank ranges from 1 to 5.

Dataset
Protected

Attribute

Ensemble

Classifiers

Ensemble

Type
Accuracy (+) F1 (+) SPD (-) EOD (-) AOD (-) DI (-) TI (-)

Mean Accuracy

Rank (-)

Mean Fairness

Rank (-)

TM-XGB 0.82 0.75 -0.65 -0.50 0.43 -1.83 0.14 2 1.4

TM-ADB 0.81 0.75 -0.81 -0.77 0.70 -2.56 0.15 3.5 4.4

TM-GBC

Boosting

0.82 0.74 -0.71 -0.57 0.54 -2.09 0.14 3.5 2.2

TM-RF 0.81 0.73 -0.68 -0.58 0.52 -2.30 0.16 5 3

TM-ET
Bagging

0.82 0.75 -0.80 -0.75 0.68 -2.76 0.15 2 4

TM-VT Voting 0.83 0.77 -0.74 -0.51 0.54 -2.10 0.12 1 2.8

Titanic Sex

TM-STK Stacking 0.82 0.76 -0.76 -0.63 0.58 -2.40 0.13 3 2.6

AC-XGB 0.87 0.71 -0.18 -0.08 0.08 -1.14 0.11 1 1.6

AC-ADB 0.86 0.66 -0.20 -0.15 0.14 -1.32 0.12 2.5 4.4

AC-GBC

Boosting

0.86 0.68 -0.19 -0.14 0.11 -1.25 0.12 2 3

AC-RF 0.85 0.67 -0.18 -0.13 0.11 -1.26 0.12 5 3.4

AC-ET
Bagging

0.84 0.65 -0.19 -0.10 0.10 -1.11 0.13 4 2.8

AC-VT Voting 0.85 0.66 -0.17 -0.13 0.09 -1.29 0.12 4.5 3.4

Adult Sex

AC-STK Stacking 0.86 0.68 -0.18 -0.11 0.09 -1.28 0.11 2.5 3.6

BM-XGB 0.93 0.70 0.15 0.08 0.08 0.77 0.05 1.5 2.2

BM-ADB 0.88 0.49 0.15 0.18 0.12 1.04 0.11 4.5 4.4

BM-GBC

Boosting

0.89 0.48 0.14 0.12 0.09 1.09 0.10 4.5 3.8

BM-RF 0.89 0.55 0.18 0.09 0.09 0.80 0.07 2.5 3

BM-ET
Bagging

0.91 0.54 0.14 0.06 0.06 0.82 0.07 2.5 2.2

BM-VT Voting 0.94 0.69 0.12 0.06 0.05 0.71 0.05 1 1.2

Bank Marketing Age

BM-STK Stacking 0.93 0.72 0.15 0.04 0.06 0.71 0.05 1.5 1.2

GC-XGB 0.72 0.65 -0.07 -0.02 0.08 -0.12 0.17 1.5 1.8

GC-ADB 0.72 0.55 -0.11 -0.07 0.13 -0.19 0.16 3 4.4

GC-GBC

Boosting

0.72 0.56 -0.08 -0.06 0.10 -0.15 0.15 3 2.6

GC-RF 0.72 0.64 -0.09 -0.04 0.09 -0.13 0.15 2 2

GC-ET
Bagging

0.70 0.60 -0.11 -0.07 0.11 -0.14 0.16 3 3.4

GC-VT Voting 0.73 0.54 -0.08 -0.05 0.08 -0.16 0.16 2 2.6

German Credit Sex

GC-STK Stacking 0.73 0.55 -0.09 -0.06 0.10 -0.17 0.14 2 2.8

fairness of ensemble models using a diverse set of metrics.

Table III shows the mean fairness for all ensembles. Figure 1

illustrates the cumulative fairness for all 168 models.

Our findings showed dataset-specific fairness patterns for

ensemble models; however, some exhibited more unfairness

than others. We used the Scott-Knott ranking test [47] to

compare the fairness and accuracy of the ensemble types and

determine if the differences are significant. The test assigns

a rank to the classifiers based on their performance, with a

higher rank indicating better results. In our experiments, the

classifiers were ranked from 1st to 5th (some with the same

rank) for each metric.

Finding 1: Among all the ensemble models, XGBoost

exhibits the best accuracy-fairness trade-off.

Table III shows varying fairness performance among the

ensemble classifiers across different datasets. Interestingly, we

observe that fairness can be highly inconsistent even within the

same ensemble type. For instance, XGBoost has the highest

rank in 8 out of 10 fairness metrics for the highly biased

Titanic and Adult datasets, with a mean fairness rank of 1.4 and

1.6, respectively. On the other hand, AdaBoost has the lowest

rank in 13 out of 16 fairness metrics across all the datasets.

Additionally, we observe that XGBoost stands out with high

accuracy and fairness across all ensemble models, contrary to

typical inverse behavior seen in ML models. For example,

in the Titanic dataset, the average performance change for

the XGBoost classifier in accuracy and f1 score is less than

0.01. However, their cumulative mean fairness is 14% more

than the next most fair model (GBC) in Titanic. For the

other datasets, we observe a similar pattern; however, the

difference is lesser due to low unfairness in the dataset. Upon

further investigation, we found that boosting method and base

learner design is responsible for the fairer performance of

XGBoost. Homogeneous ensembles use decision trees as the

base learner, and the construction of these trees differs among

them. For example, the depth of the decision tree in AdaBoost,
GradientBoosting, XGBoost is one, three, and six, respectively.

Lower tree depth means fewer features are selected, which has

been shown to often increase unfairness [13, 48]. Importantly,

we found that the fairness of an ensemble is determined by

the composition of fairness within these base learners and

the learning method (boosting, bagging, etc.). In the next

section, we delve deeper into the properties of base learners

to understand how to create fair ensembles.

Finding 2: Fairness measures show more instability

compared to accuracy metrics.

Prior works have shown that ensembles improve the stability

of accuracy metrics by aggregating multiple learners trained

1541

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Ac

c F1
Bi

as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as Ac
c F1

Bi
as

TM-XGB TM-ADB TM-GBC TM-RF TM-ET TM-STK TM_VT AC-XGB AC-ADB AC-GBC AC-RF AC-ET AC-STK AC-VT BM-XGB BM-ADB BM-GBC BM-RF BM-ET BM-STK BM-VT GC-XGB GC-ADB GC-GBC GC-RF GC-ET GC-STK GC-VT

Titanic Adult Bank Marketing German Credit

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Fig. 1: Cumulative bias and performance of all ensembles. The bars represent mean values, and the dots the models

on subsets of data (bootstrap sampling) [44, 49]. Intuitively,

we explore the variance exhibited by fairness metrics in

ensembles. Interestingly, despite aggregating multiple learners,

the stability of fairness measures in ensembles still suffers,

especially in smaller datasets. This is attributed to the change

in data distribution after random train/test splits in smaller

datasets [11, 13]. For larger datasets (Adult, Bank Marketing),

the standard deviation for all fairness measures is less than

0.02. For smaller datasets, the average standard deviation of

the metrics is shown in Figure 2. Firstly, we observe that the

stability of fairness metrics remains consistent between all the

ensembles for a specific dataset. Furthermore, we observed

that group fairness measures exhibit higher variability than

individual fairness measures (TI). Surprisingly, heterogeneous

models also exhibit instability despite using dissimilar learners

to reduce variance. From Figure 3, we also see that the

volatility in fairness metrics is greater than in accuracy metrics

for homogeneous models. Given a random train/test split, it

might cause the model to seem fairer than it is. Hence, even

with improved stability in fairness compared to non-ensemble

methods, developers should evaluate the training set and repeat

training over multiple runs in ensembles.

Finding 3: Libraries do not provide API support to

measure fairness of base learners in ensembles

Biswas and Rajan [13] discussed that hyperparameter opti-

mization goals induce unfairness. In the case of heterogeneous

ensemble models, the developer must carefully choose the

number and type of individual base learners. Libraries do

not provide any recommendations to developers, who try to

select a diverse set of learners to improve accuracy. However,

this might not always result in a fair ensemble. For instance,

removing a GaussianNB learner from the BM-STK3 model

improved its Statistical Parity Difference (SPD) from 0.13 to

0.11 while also increasing accuracy. Heterogeneous ensemble

models, such as Voting models that use weighted voting and

Stacking models that use a meta-learner to determine the best

weighing configuration of learners, can be challenging to train

fairly since libraries do not provide API support to measure the

fairness of base learners, especially in combinations with other

learners at the ensemble level. Hence, developers have little

0.00

0.04

0.08

0.12

ADB GBC XGB RF ET VT STK ADB GBC XGB RF ET VT STK

Titanic German Credit

SPD EOD AOD DI TI

Fig. 2: Standard deviation of fairness metrics over multiple

experiments. Other datasets have very low standard deviation.

information on how to weigh and select individual learners,

which can lead to unfair ensembles. Similarly, understanding

fairness composition in base learners of homogeneous models

can help the developer identify fairness issues such as bias in

specific features (e.g., decision tree learners in random forest

randomly select features). Therefore, API support to measure

fairness in base learners can help developers better understand

& detect unfairness in ensembles.

B. How does fairness compose in ensembles?

In this section, we investigate the composition of fairness

in ensembles. We posit that the underlying unfairness of

ensembles is a product of the composition of fairness in base

learners and the learning method. All homogeneous models

use a decision tree as the base learner, whereas heterogeneous

models can be constructed with any ML classifier. We investi-

gate how fairness composes in these base learners and how it is

propagated by the learning techniques (RQ2). In general, our

findings show that the complexity of base learners significantly

impacts the fairness of ensembles and that more research is

needed to develop fair learning techniques in ensembles.

Finding 4: The unfairness of homogeneous ensembles is

caused by the complexity of the base learner and dataset

characteristics.

In Figure 3, we plotted the most biased and the least biased

homogeneous ensembles in our benchmark. We see how the

1542

Fig. 3: Composition of fairness in homogeneous ensembles with respect to base learners. Default no. of trees: T100

fairness of the base learners directly contributes to the fairness

of ensembles during training. However, we observe different

fairness composition patterns in terms of the datasets. For

example, in Titanic, the fairness of the boosting ensembles

improves, while the opposite is observed for some fairness

metrics in German Credit. The variation in fairness patterns

is also seen in specific classifiers. From Figure 1, we observe

that all TM-XGB models show similar bias except TM-XGB4.

We investigate the difference in unfairness by comparing all

the parameters of the base learner decision tree with the other

XGB models and found that TM-XGB4 uses a shallow decision

tree with max depth : 2, which is causing the unfairness to

amplify. The model construct is shown below:

1 model = X G B C l a s s i f i e r (n e s t i m a t o r s = 500 , max depth =2 ,
subsample = 0 . 5 , l e a r n i n g r a t e = 0 . 1)

MaxDepth sets the maximum depth of the decision tree. The

depth of the tree is defined as the number of splits (nodes),

where the feature to be split is chosen based on the highest

information gain among the features. Deeper trees are more

complex and reduce errors [50]. For XGBoost models, the

default depth is 6. Our analysis showed that the protected

attribute (Sex) has the highest information gain among all

the features in the Titanic dataset. Therefore, the protected

attribute is the most important feature to split on at the

tree’s root, resulting in a high degree of unfairness in TM-
XGB4. Base learners in all boosting models use the best

feature to split, which improves accuracy. However, it has

been shown that unfairness is encoded in specific features

[51]. If these features are also among the best features of

a dataset, a shallower ensemble will be more unfair due

to a reduced number of features. This corroborates similar

observations in the literature [12, 48]. We observe the same

pattern for all boosting models. For example, AdaBoost and

GradientBoosting exhibit more bias than XGBoost because of

shallower base learners (1 and 3, respectively). In Figure 1,

TM-GBC1 is fairer because the learner is deeper (depth:5).

Finally, further analysis of the properties of a decision tree

suggests that regularization parameters like min samples leaf

and max-leaf nodes also impact tree depth, hence affecting the

fairness of the ensemble. Therefore, it is important to carefully

balance the complexity of the tree-based base learners for

-3.5

-2.5

-1.5

-0.5

0.5

1.5

TM
1

TM
2

TM
3

TM
4

TM
5

TM
6

AC
1

AC
2

AC
3

AC
4

AC
5

AC
6

BM
1

BM
2

BM
3

BM
4

BM
5

BM
6

G
C1

G
C2

G
C3

G
C4

G
C5

G
C6

Titanic Adult Bank Marketing German Credit

Adaptive Gradient

Fig. 4: Cumulative fairness in adaptive vs. gradient learning

homogeneous models with the fairness outcomes, especially

with the underlying properties of the data.

Finding 5: Gradient-based composition propagates more

unfairness compared to Adaptive boosting models.

We have established that base learners and the underlying data

properties influence the unfairness of homogeneous models.

However, boosting models also use a learning technique to

improve the model’s predictions sequentially. XGBoost and

GradientBoosting models use gradient-based optimization and

AdaBoost uses an adaptive weighting technique. We compare

these techniques by training the boosting models on the same

base learner decision tree (depth:6). We only use XGBoost and

choose this depth in our experiment since our analysis (Table

III) showed that it is the most fair boosting model. The results

are shown in Figure 4. For all the models except GC1, we

see that adaptive learning is fairer than gradient optimization.

We use the Scott-Knott rank test to test statistical significance.

Accordingly, we observed that adaptive learning outperformed

gradient optimization in all datasets except German Credit,

where the difference was not statistically significant. Con-

sequently, we can see that adaptive learning propagates less

bias in highly biased datasets. Our analysis should help guide

further research into designing fair learning techniques for

boosting ensembles.

1543

TABLE IV: Ensemble-related hyperparameters (HP) that can affect the design of fair ensembles

HP Values Default ADB GBC XGB RF ET Voting Stacking
n estimators Total number of trees/boosting rounds 100 � � � � �
booster Booster type: gbtree, gblinear, dart gbtree �
bootstrap Data sampling with replacement RF: True, Others: False � � � �
voting Voting Type: soft, hard hard �
estimators Base learners for the ensemble ADB: DecisionTree, Others: none � � �
final estimator Meta-learner to combine learner predictions Logistic Regression �

V. FAIR ENSEMBLES DESIGN

In §IV, we found that base learners of ensembles prop-

agate bias. Many bias mitigation techniques applied during

model training (inprocess) have been successful [24, 25, 32].

Techniques applied during the model training phase can assist

developers in improving the fairness of ML software. These

works have also established the role of hyperparameters in

mitigating and amplifying fairness bugs (unfairness) in ML

software. If we understand and identify what ensemble param-

eters and design choices affect the fairness, we can mitigate

inherent bias in ensembles. Moreover, it will help developers,

and libraries better explain fairness bugs in the ensemble hy-

perparameter space. This section explores the hyperparameter

design space for ensembles to boost fairness performance.

We have found that some hyperparameters directly affect the

fairness of ensembles. Specifically, we evaluate how ensembles

can be designed to be fair using ensemble hyperparameters

summarized in Table IV. We use the Scott-Knott test to

determine the significance of our results. Our findings provide

a comprehensive review of all ensemble hyperparameters.

Finding 6: Developers should carefully choose dropout

regularization to balance fairness and overfitting.

Our analysis shows that dropout impacts fairness in relation

to the underlying data properties. Vinayak and Gilad-Bachrach

[52] proposed DART, a dropout technique derived from deep

neural networks, for boosted trees. An ensemble of boosted

regression trees suffers from over-specification, i.e., the trees

added at the end have little contribution to the final result

[52]. DART alleviates this by constructing the next tree from

the residuals of a random sample of the previous trees. In XG-
Boost, the rate-drop ([0-1]) parameter controls this sampling

rate. No trees are dropped on the lower end of this rate, while

on the higher extreme, all trees are dropped. We investigate the

efficacy of DART with ratedrop = 0.5, in reducing unfairness

in boosting models by comparing it with the default XGBoost
booster gbtree. We analyze the change in performance and

fairness of dropout in Figure 5.

From Figure 5, we can see that dropout can impact the

fairness of boosting models. For example, in Adult dataset,

initial trees exhibit less unfairness than the latter. Using

dropout, the subsequent trees only learn on a random sample

of initial trees, which in this case are fairer. This improves

the fairness of the models. The opposite is observed in Titanic
dataset. In both scenarios, the change in accuracy is less than

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25

Acc

F1

Bias

Acc

F1

Bias

Acc

F1

Bias

Acc

F1

Bias

Ti
ta

ni
c

Ad
ul

t
Ba

nk
 M

ar
ke

tin
g

G
er

m
an

 C
re

di
t

Model 6 Model 5 Model 4 Model 3 Model 2 Model 1

Fig. 5: Change in accuracy and total bias when using DART.

A negative value denotes lower fairness & accuracy

0.1, but a significant impact is seen on fairness. Therefore,

developers should be cautious about the effect of regulariza-

tion on fairness. More research is needed to understand the

fairness-overfitting trade-off and develop fair regularization.

Finding 7: Randomness in feature splitting does not

improve fairness in bagging models.

Random Forest improves the variance of the model by

introducing randomness to the process of model building by

randomly selecting features. Extra Trees introduces additional

randomness by randomly finding the splits for each feature and

then selecting the best split from them, i.e., independent of the

target variable. In contrast, Random Forest finds the best split

for each feature which has been shown to improve accuracy

[53]. However, no work has studied its effect on fairness. Here,

we ask whether randomness at the feature splitting level causes

bagging models to be unfair.

To investigate this, we compare Random Forest and Extra
Tree models in our benchmark. We keep the rest of the

parameters and data split the same. Each model is run ten

times, and the mean is reported in Table V. For all datasets

except German Credit, the test showed that Extra Tree models

with random splits were more biased compared to optimal

splits (RF). This is a key finding because this suggests that

1544

TABLE V: Mean total fairness in Random Forest (RF) and

ExtraTrees (ET) models. ∗ denotes the top rank based on the

Scott-Knott significance rank test for each dataset.

Titanic Adult Bank Marketing German Credit

RF∗ ET RF∗ ET RF∗ ET RF ET

Model1 -2.04 -1.96 -1.33 -1.32 1.16 1.35 0.03 0.02
Model2 -4.43 -5.37 -1.29 -1.30 1.37 1.41 0.43 0.29
Model3 -3.38 -4.13 -1.32 -1.45 0.96 1.07 0.02 -0.04
Model4 -2.42 -2.46 -1.21 -1.29 1.36 1.35 -0.16 -0.09
Model5 -2.98 -3.38 -1.48 -1.51 1.61 1.51 0.00 -0.04
Model6 -2.61 -2.61 -1.47 -1.41 0.98 1.26 -0.04 -0.28

a split chosen independently of the target is still more unfair

than an optimal split. However, in the fairer dataset (German
Credit), we observe no difference in fairness. Regarding bias

mitigation methods, our results suggest randomness in feature

split-point might not be an effective way to tackle bias in

decision tree-based models.

Finding 8: The uncertainty in classifiers can have a large

impact on fairness in voting classifiers.

A Voting classifier is an ensemble method where the predic-

tion is based on the probabilities of each base learner within

the ensemble. Voting classifiers are of two types, Soft and

Hard Voting. In hard Voting, the label with the majority of

votes from the base learners is the final prediction, whereas,

in soft voting, it is based on the average of the probabilities

of each output class. If the average probability of a class

is less than 0.5, class 0 is predicted, and vice-versa. We

investigate the effect of the voting type on fairness and found

that the uncertainty in the model prediction can have a large

impact on fairness. For instance, AC-VT5 uses soft voting

with Logistic Regression (LR), Random Forest (RF), KNN,

and Decision Tree (DT) as base classifiers. As shown in Table

VI, DT introduces significant unfairness when used in soft

voting compared to hard. We found that DT has an output

class probability of either 1 or 0 while other classifiers are in

the range [0,1].

Fig. 6: Frequency of output class probabilities for base learners

in AC-VT5

Figure 6 shows the output probabilities for AC-VT5. We

observe that DT has higher extreme probabilities compared

to others. In this case, the average is skewed by the extreme

TABLE VI: Soft vs Hard Voting in AC-VT5

Soft Hard
Voting LR RF KNN DT Voting LR RF KNN DT

Acc 0.83 0.78 0.81 0.81 0.83 0.81 0.78 0.81 0.81 0.81
F1 0.56 0.41 0.44 0.43 0.56 0.44 0.41 0.41 0.45 0.44

SPD -0.14 -0.06 -0.08 -0.07 -0.14 -0.07 -0.06 -0.06 -0.08 -0.07
EOD -0.14 0 0 0 -0.14 -0.03 0 -0.03 -0.04 -0.03
AOD 0.1 0.01 0.02 0.02 0.1 0.02 0.01 0.02 0.03 0.02

DI -1.43 -0.64 -1.13 -1.02 -1.43 -1.08 -0.64 -1.11 -1.02 -1.08
TI 0.17 0.21 0.2 0.2 0.17 0.2 0.22 0.21 0.2 0.2

probabilities of DT. This changes the prediction for 558 out

of 9049 test samples. And since DT is less fair than other

classifiers, the overall unfairness also increases. For hard

voting, equal weight is given to each classifier. In that case,

the other three classifiers, which are fairer, won the majority

vote. For some models, soft voting was fairer than hard, e.g.,

AC-VT3, which shows that base learners’ uncertainties can

impact fairness in both voting types. This suggests the need to

develop frameworks to measure model uncertainties and their

fairness at a component level to aid developers in designing

fair voting ensembles. Our analysis should also encourage

further research in fairness-aware weighting techniques to

handle fairness issues arising from model uncertainties.

Finding 9: Two-layer stacking can significantly reduce

unfairness.

All of the Titanic ML stacking models shown in Figure

1 exhibit similar bias except TM-STK5, which is the least

biased model for all fairness metrics except Thiel Index (TI).

On closer inspection, we found out that TM-STK5 uses a

two-layered stacking approach where a second layer of base

learners act as the meta-learner, which causes the model to be

fairer. The model construct is shown below:

1 l a y e r o n e e s t i m a t o r s = [(' r f 1 ' , R a n d o m F o r e s t C l a s s i f i e r (
n e s t i m a t o r s =40 , r a n d o m s t a t e =42)) , (' knn 1 ' ,
K N e i g h b o r s C l a s s i f i e r (n n e i g h b o r s =6))]

2 l a y e r t w o e s t i m a t o r s = [(' r f 2 ' , R a n d o m F o r e s t C l a s s i f i e r (
n e s t i m a t o r s =40 , r a n d o m s t a t e =42)) , (' xg 2 ' ,
X G B C l a s s i f i e r (o b j e c t i v e = ' b i n a r y : l o g i s t i c ' ,
c o l s a m p l e b y t r e e = 0 . 8 , l e a r n i n g r a t e = 0 . 3 ,
max depth = 7 , m i n c h i l d w e i g h t = 3 , n e s t i m a t o r s =
100 , subsample = 0 . 6))]

3 l a y e r t w o = S t a c k i n g C l a s s i f i e r (e s t i m a t o r s =
l a y e r t w o e s t i m a t o r s , f i n a l e s t i m a t o r = X G B C l a s s i f i e r (
n e s t i m a t o r s = 100))

4 model = S t a c k i n g C l a s s i f i e r (e s t i m a t o r s =
l a y e r o n e e s t i m a t o r s , f i n a l e s t i m a t o r = l a y e r t w o)}

We validate our finding by training all stacking models

in our benchmark using this two-layered nested stacking ap-

proach. To ensure consistency, we did not change the kernel’s

feature set or any preprocessing method. The results are shown

in Figure 7. For all stacking models in our benchmark, every

model significantly improved in all fairness measures except

Thiel Index, which is typical as previous works [8, 54] have

shown that achieving fairness in terms of all fairness metrics is

often difficult. Moreover, accuracy measures did not degrade

significantly. For example, TM-STK6 improved SPD scores by

28% while accuracy dropped only 4.68%. Overall across all

1545

-0.2

0

0.2

0.4

TM1 TM2 TM3 TM4 TM6 AC1 BM1 GC1

Acc F1 SPD EOD AOD TI

-0.1

0.1

0.3

Fig. 7: Performance & fairness changes after using two-layered

stacking (Top) and XGB as meta-learner (Bottom). A positive

change indicates performance/fairness increase and vice-versa

datasets, the accuracy score dropped by 6.50% while the SPD
improved by 31.8%.

In Stacking, the first layer uses a list of base learners to

generate a set of predictions and a meta-learner to learn from

them. However, instead of using a single classifier as the meta-

learner, the predictions are fed into another set of base learners

in a two-layered approach. This ensures that the outcome is

not based on a single meta-learner. Therefore, the second layer

of learners creates a new set of predictions, which are then

fed into the second layer’s final meta-classifier. We compare

this approach to simply using an ensemble model (XGB) as

the meta-learner in default Stacking models and found similar

patterns in fairness measures (Figure 7 bottom). Our results

did not significantly vary between using other ensembles as

the meta-learner. This supports observations that ensembles are

fairer than standalone classifiers. Therefore, developers should

use an ensemble as a meta-learner or the two-layer approach

to improve the fairness of Stacking models.

VI. DISCUSSION

In this study, we undertook the important task of understand-

ing the composition of fairness in ensemble machine learning.

Fairness of ML algorithms has been extensively studied, start-

ing from empirical evaluation and identification [12, 13, 48]

to mitigation [25, 37, 55, 56] and testing [1, 14, 57, 58].

However, no work has explored the composition of fairness

in ensemble models, although ensembles cover the majority

of prior SE works and open-source [12, 13, 23]. We showed

that considering ensemble models as monolithic classifiers

leaves the opportunity to identify the root cause of unfairness.

Consequently, our work has shown that fair ensembles can

be designed without using bias mitigation techniques. Our

research also identifies root causes of unfairness in different

ensembles and their interplay with the input space in the

pipeline [59], which would guide fairness bug localization and

repair in ensemble learning. For example, we report fairness

patterns in individual learners that can induce bias in ensem-

bles such as tree depth, minimum leaf node samples, etc. These

can also be leveraged for fairness-improving interventions such

as feature selection, data preprocessing, etc. Overall, our result

would draw attention to the fairness of ensembles which are

popular learning algorithms but mostly overlooked by the

community.

Moreover, research in SE showed the impact of hyperparam-

eters on fairness and their role in helping developers mitigate

bias during model training [12, 25, 32]. We extend that to

explore the hyperparameter space for ensembles to guide

developers to design fair ensembles using currently available

compositions and configurations. Our findings also made direct

design suggestions for enhancing specific ensemble library

APIs for feature splitting, dropout regularization, and fairness-

accuracy trade-offs. This should encourage the development

of fairness-aware regularization techniques and investigate the

trade-off between fairness mitigation and overfitting. We found

that many ensemble models do not have library support to

monitor the fairness of individual learners. Finally, our work

would encourage the development of tools and API support to

improve the transparency of ML software to address fairness

concerns.

VII. THREATS TO VALIDITY

Benchmark: We ensure the quality of the benchmark by

collecting only high-quality kernels from Kaggle (at least five

upvotes). Additionally, we only consider runnable models,

include the protected attribute in training, and have an accuracy

greater than 65%, similar to [13]. Finally, we select the top 6

(upvotes) models for each ensemble type.

Sampling Bias: To the best of our knowledge, this is the

most extensive review of popular ensembles. Moreover, con-

clusions are supported by statistical tests across four datasets.

However, they may change slightly if other datasets are used.

Generalizability: To avoid the threat of non-generalized

findings, we conduct experiments on four different datasets

for each ensemble type and compare across multiple ensemble

algorithms for both boosting and bagging. Moreover, we use

multiple fairness metrics and verify our results by running the

experiment multiple (ten) times and using the mean of the

values.

VIII. RELATED WORK

a) Fairness in ML classification: The ML community

has proposed multiple methods to measure [2, 4, 5, 8, 27, 60]

and mitigate unfairness in ML models [5, 8, 9, 24, 61].

However, most of these works have focused on the theo-

retical evaluation of fairness. Recently, the SE community

has increasingly shown interest in fairness in ML software

[10]. Empirical studies have investigated the characteristics

of biased models and unfairness in ML pipelines, compared

mitigation strategies and developer concerns about fairness

[11–13, 62]. Some research in SE has focused on fairness

1546

testing and verification and uncovering fairness violations

[1, 14, 57, 58, 63]. Finally, a body of work has identified

unfairness in data and proposed appropriate mitigation tech-

niques [25, 37, 55, 64].

b) Ensemble Fairness: Grgic-Hlaca et al. [31] investi-

gated the impact of fairness in the random-selection-based

ensemble. They showed theoretically that its fairness at the

ensemble level is always fairer than its components. Wang

et al. [65] studied the composition of fairness in multi-

component recommender systems and presented conditions

under which individual components compose fairness. AdaFair

[30] proposed a fairness-aware AdaBoost model where un-

fairly classified instances were up-weighted. A recent work

[29] analyzed and compared seven ML models to show that

ensembles were fairer than individual classifiers. Feffer et al.
[28] conducted an empirical study to analyze modular ensem-

bles. They developed a library to find the best configuration

using any combination of ensembles and mitigators. In Fair

Pipelines [15], the authors explored the propagation of fairness

in multi-stage pipelines where a set of decisions impacts the

final result, e.g., the hiring process. MAAT [56] proposes an

ensemble approach to improve fairness performance by sepa-

rately combining models optimized for fairness and accuracy.

Finally, Tizpaz-Niari et al. studied the parameter space of ML

algorithms and its impact on fairness [32]. This work is the

closest to our study; however, it proposed a testing approach to

tune the parameters for achieving fairness and did not consider

ensembles (except random forest). Our work has focused on

comprehensively evaluating fairness composition in all popular

ensemble models and how the different algorithmic design

configurations (parameters) impact fairness.

IX. CONCLUSION

Ensembles are widely used for predictive tasks due to

superior performance. However, most approaches to measuring

fairness and mitigation focus on single classifiers. In this paper,

we conduct an empirical study to evaluate the composition of

fairness in popular ensemble techniques. The results showed

that base learners induce bias in ensembles and that we

can mitigate inherent bias in ensembles by using certain

base learner configurations and appropriate parameters. Lastly,

works have shown the need to support developers during

model training in mitigating bias. Our analysis of the hyper-

parameter space should help developers build fairness-aware

ensembles and automated tools to detect bias in ensembles.

ACKNOWLEDGMENT

This work was supported in part by US NSF grants CCF-

19-34884, CCF-22-23812, and CNS-21-20448. We also thank

the anonymous reviewers for their insightful comments. All

opinions are of the authors and do not reflect the view of

sponsors.

REFERENCES

[1] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black box
fairness testing of machine learning models,” in ESEC/FSE 2019.
Association for Computing Machinery, 2019, p. 625–635.

[2] L. Dixon, J. Li, J. Sorensen, N. Thain, and L. Vasserman, “Measuring
and mitigating unintended bias in text classification,” in AAAI/ACM, ser.
AIES ’18, 2018, p. 67–73.

[3] J. Larson, L. Kirchner, S. Mattu, and J. Angwin,
“Machine Bias.” [Online]. Available: https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing

[4] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel,
“Fairness through awareness,” in Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ser. ITCS ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 214–226.
[Online]. Available: https://doi.org/10.1145/2090236.2090255

[5] T. Calders and S. Verwer, “Three naive bayes approaches for
discrimination-free classification,” Data Mining and Knowledge Discov-
ery, vol. 21, pp. 277–292, 2010.

[6] T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla,
A. Weller, and M. B. Zafar, “A Unified Approach to Quantifying
Algorithmic Unfairness: Measuring Individual &;Group Unfairness
via Inequality Indices,” ser. KDD ’18. New York, NY, USA:
Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3219819.3220046

[7] M. B. Zafar, I. Valera, M. Gomez-Rodriguez, and K. P. Gummadi,
“Fairness constraints: A flexible approach for fair classification,”
Journal of Machine Learning Research, vol. 20, no. 75, pp. 1–42,
2019. [Online]. Available: http://jmlr.org/papers/v20/18-262.html

[8] A. Chouldechova, “Fair prediction with disparate impact: A study of bias
in recidivism prediction instruments,” Big data, vol. 5 2, pp. 153–163,
2017.

[9] G. Goh, A. Cotter, M. Gupta, and M. P. Friedlander, “Satisfying
real-world goals with dataset constraints,” in Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc.,
2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
file/dc4c44f624d600aa568390f1f1104aa0-Paper.pdf

[10] Y. Brun and A. Meliou, “Software fairness,” in Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2018. New York, NY, USA:
Association for Computing Machinery, 2018, p. 754–759. [Online].
Available: https://doi.org/10.1145/3236024.3264838

[11] S. A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary,
E. P. Hamilton, and D. Roth, “A comparative study of fairness-enhancing
interventions in machine learning,” in Proceedings of the Conference on
Fairness, Accountability, and Transparency, ser. FAT* ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 329–338.
[Online]. Available: https://doi.org/10.1145/3287560.3287589

[12] S. Biswas and H. Rajan, “Fair preprocessing: Towards understanding
compositional fairness of data transformers in machine learning
pipeline,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 981–993. [Online].
Available: https://doi.org/10.1145/3468264.3468536

[13] S. Biswas and H. Rajan, “Do the machine learning models on a
crowd sourced platform exhibit bias? an empirical study on model
fairness,” ser. ESEC/FSE 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 642–653. [Online]. Available:
https://doi.org/10.1145/3368089.3409704

[14] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing software
for discrimination,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: Association for Computing Machinery, 2017, p.
498–510. [Online]. Available: https://doi.org/10.1145/3106237.3106277

[15] A. Bower, S. N. Kitchen, L. Niss, M. J. Strauss, A. Vargas, and
S. Venkatasubramanian, “Fair pipelines,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.00391

[16] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
J. Mach. Learn. Res., vol. 15, no. 1, p. 3133–3181, jan 2014.

[17] N. C. Oza and S. Russell, Online ensemble learning. University of
California, Berkeley, 2001.

[18] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization,” Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[19] E. Bauer and R. Kohavi, “An empirical comparison of voting classifi-

1547

cation algorithms: Bagging, boosting, and variants,” Machine learning,
vol. 36, no. 1, pp. 105–139, 1999.

[20] M. Hosni, I. Abnane, A. Idri, J. M. Carrillo de Gea, and J. L.
Fernández Alemán, “Reviewing ensemble classification methods in
breast cancer,” Computer Methods and Programs in Biomedicine, vol.
177, pp. 89–112, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0169260719301907

[21] N. Ueda and R. Nakano, “Generalization error of ensemble estima-
tors,” in Proceedings of International Conference on Neural Networks
(ICNN’96), vol. 1, 1996, pp. 90–95 vol.1.

[22] Y. Bian and H. Chen, “When does diversity help generalization in
classification ensembles?” IEEE Transactions on Cybernetics, pp. 1–17,
2021.

[23] D. Hin, “Stackoverflow vs kaggle: A study of developer discussions
about data science,” CoRR, vol. abs/2006.08334, 2020. [Online].
Available: https://arxiv.org/abs/2006.08334

[24] B. H. Zhang, B. Lemoine, and M. Mitchell, “Mitigating unwanted
biases with adversarial learning,” in Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, ser. AIES ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 335–340.
[Online]. Available: https://doi.org/10.1145/3278721.3278779

[25] J. Chakraborty, S. Majumder, Z. Yu, and T. Menzies, Fairway: A
Way to Build Fair ML Software. New York, NY, USA: Association
for Computing Machinery, 2020, p. 654–665. [Online]. Available:
https://doi.org/10.1145/3368089.3409697

[26] M. Feldman, S. A. Friedler, J. Moeller, C. Scheidegger, and
S. Venkatasubramanian, “Certifying and removing disparate impact,” in
Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 259–268.
[Online]. Available: https://doi.org/10.1145/2783258.2783311

[27] M. Hardt, E. Price, E. Price, and N. Srebro, “Equality of
opportunity in supervised learning,” in Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,
I. Guyon, and R. Garnett, Eds., vol. 29. Curran Associates, Inc.,
2016. [Online]. Available: https://proceedings.neurips.cc/paper/2016/
file/9d2682367c3935defcb1f9e247a97c0d-Paper.pdf

[28] M. Feffer, M. Hirzel, S. C. Hoffman, K. Kate, P. Ram, and A. Shinnar,
“An empirical study of modular bias mitigators and ensembles,” 2022.
[Online]. Available: https://arxiv.org/abs/2202.00751

[29] P. J. Kenfack, A. M. Khan, S. A. Kazmi, R. Hussain, A. Oracevic,
and A. M. Khattak, “Impact of model ensemble on the fairness of
classifiers in machine learning,” in 2021 International Conference on
Applied Artificial Intelligence (ICAPAI), 2021, pp. 1–6.

[30] D. Bhaskaruni, H. Hu, and C. Lan, “Improving prediction fairness via
model ensemble,” in 2019 IEEE 31st International Conference on Tools
with Artificial Intelligence (ICTAI), 2019, pp. 1810–1814.

[31] N. Grgic-Hlaca, M. Zafar, K. P. Gummadi, and A. Weller, “On fairness,
diversity and randomness in algorithmic decision making,” 06 2017.

[32] S. Tizpaz-Niari, A. Kumar, G. Tan, and A. Trivedi, “Fairness-aware
configuration of machine learning libraries,” ser. ICSE ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 909–920.
[Online]. Available: https://doi.org/10.1145/3510003.3510202

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] S. Butte, A. Prashanth, and S. Patil, “Machine learning based predictive
maintenance strategy: A super learning approach with deep neural
networks,” in 2018 IEEE Workshop on Microelectronics and Electron
Devices (WMED), 2018, pp. 1–5.

[35] M. O. Elish, T. Helmy, and M. I. Hussain, “Empirical study of homo-
geneous and heterogeneous ensemble models for software development
effort estimation,” Mathematical Problems in Engineering, vol. 2013,
pp. 1–21, 2013.

[36] Kaggle.com., “Kaggle: Your machine learning and data science
community.” 2010. [Online]. Available: https://www.kaggle.com

[37] J. Chakraborty, S. Majumder, and T. Menzies, “Bias in machine learning
software: Why? how? what to do?” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2021.
New York, NY, USA: Association for Computing Machinery, 2021, p.
429–440. [Online]. Available: https://doi.org/10.1145/3468264.3468537

[38] “Uci ml adult census,” 1994. [Online]. Available: https://archive.ics.uci.
edu/ml/datasets/adult

[39] “Kaggle titanic,” 2018. [Online]. Available: https://www.kaggle.com/c/
titanic

[40] “Uci ml bank marketing,” 2012. [Online]. Available: https://archive.ics.
uci.edu/ml/datasets/bank+marketing

[41] M. Lichman, “Uci,” 1994. [Online]. Available: https://archive.ics.uci.
edu/ml/datasets/statlog+(german+credit+data)

[42] “Kaggle german credit,” 2016. [Online]. Available: https://www.kaggle.
com/uciml/german-credit

[43] R. Binns, “Fairness in machine learning: Lessons from political
philosophy.” [Online]. Available: https://arxiv.org/abs/1712.03586

[44] R. K. E. Bellamy, K. Dey, M. Hind, S. C. Hoffman, S. Houde,
K. Kannan, P. K. Lohia, J. Martino, S. Mehta, A. Mojsilovic, S. Nagar,
K. N. Ramamurthy, J. T. Richards, D. Saha, P. Sattigeri, M. Singh,
K. R. Varshney, and Y. Zhang, “Ai fairness 360: An extensible toolkit
for detecting, understanding, and mitigating unwanted algorithmic bias,”
ArXiv, vol. abs/1810.01943, 2018.

[45] T. Calders and S. Verwer, “Three naive bayes approaches for
discrimination-free classification,” Data Mining and Knowledge Discov-
ery, vol. 21, pp. 277–292, 2010.

[46] F. Martı́nez-Plumed, C. Ferri, D. Nieves, and J. Hernández-Orallo,
“Fairness and missing values,” arXiv preprint arXiv:1905.12728, 2019.

[47] B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact
of classification techniques on the performance of defect prediction
models,” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1, 2015, pp. 789–800.

[48] J. M. Zhang and M. Harman, “”ignorance and prejudice” in software
fairness,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), 2021, pp. 1436–1447.

[49] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[50] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
p. 81–106, mar 1986. [Online]. Available: https://doi.org/10.1023/A:
1022643204877

[51] N. Grgić-Hlača, M. B. Zafar, K. P. Gummadi, and A. Weller, “Beyond
distributive fairness in algorithmic decision making: Feature selection
for procedurally fair learning,” in Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence, ser.
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018.

[52] K. V. Rashmi and R. Gilad-Bachrach, “Dart: Dropouts meet multiple
additive regression trees,” 2015.

[53] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[54] R. Berk, H. Heidari, S. Jabbari, M. Kearns, and A. Roth, “Fairness in
criminal justice risk assessments: The state of the art,” 2017. [Online].
Available: https://arxiv.org/abs/1703.09207

[55] J. Chakraborty, H. Tu, S. Majumder, and T. Menzies, “Can we achieve
fairness using semi-supervised learning?” CoRR, vol. abs/2111.02038,
2021. [Online]. Available: https://arxiv.org/abs/2111.02038

[56] Z. Chen, J. M. Zhang, F. Sarro, and M. Harman, “Maat: A novel
ensemble approach to addressing fairness and performance bugs for
machine learning software,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1122–1134.
[Online]. Available: https://doi.org/10.1145/3540250.3549093

[57] H. Zheng, Z. Chen, T. Du, X. Zhang, Y. Cheng, S. Ti, J. Wang, Y. Yu, and
J. Chen, “Neuronfair: Interpretable white-box fairness testing through
biased neuron identification,” in 2022 IEEE/ACM 44th International
Conference on Software Engineering (ICSE), 2022, pp. 1519–1531.

[58] F. Tramer, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux, M. Hum-
bert, A. Juels, and H. Lin, “Discovering unwarranted associations in
data-driven applications with the fairtest testing toolkit,” 10 2015.

[59] S. Biswas, M. Wardat, and H. Rajan, “The art and practice of data
science pipelines: A comprehensive study of data science pipelines
in theory, in-the-small, and in-the-large,” in Proceedings of the 44th
International Conference on Software Engineering, ser. ICSE ’22.
New York, NY, USA: Association for Computing Machinery, 2022,
p. 2091–2103. [Online]. Available: https://doi.org/10.1145/3510003.
3510057

[60] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, “Learning fair

1548

representations,” in Proceedings of the 30th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
S. Dasgupta and D. McAllester, Eds., vol. 28, no. 3. Atlanta, Georgia,
USA: PMLR, 17–19 Jun 2013, pp. 325–333. [Online]. Available:
https://proceedings.mlr.press/v28/zemel13.html

[61] G. Pleiss, M. Raghavan, F. Wu, J. Kleinberg, and K. Q. Weinberger,
“On fairness and calibration,” in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/b8b9c74ac526fffbeb2d39ab038d1cd7-Paper.pdf

[62] K. Holstein, J. Wortman Vaughan, H. Daumé, M. Dudik, and H. Wallach,
“Improving fairness in machine learning systems: What do industry
practitioners need?” in Proceedings of the 2019 CHI Conference on

Human Factors in Computing Systems, ser. CHI ’19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 1–16.

[63] S. Biswas and H. Rajan, “Fairify: Fairness verification of neural net-
works,” in ICSE’2023: The 45th International Conference on Software
Engineering, May 14-May 20 2023.

[64] Y. Li, L. Meng, L. Chen, L. Yu, D. Wu, Y. Zhou, and B. Xu, “Training
data debugging for the fairness of machine learning software,” in 2022
IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, pp. 2215–2227.

[65] X. Wang, N. Thain, A. A. Sinha, F. Prost, E. H. Chi, J. Chen, and
A. Beutel, “Practical compositional fairness: Understanding fairness
in multi-component recommender systems,” in WSDM 2021, 2021.
[Online]. Available: https://arxiv.org/pdf/1911.01916.pdf

1549

