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ABSTRACT

Machine learning (ML) is increasingly being used in critical decision-

making software, but incidents have raised questions about the

fairness of ML predictions. To address this issue, new tools and

methods are needed to mitigate bias in ML-based software. Previous

studies have proposed bias mitigation algorithms that only work

in specific situations and often result in a loss of accuracy. Our

proposed solution is a novel approach that utilizes automated ma-

chine learning (AutoML) techniques to mitigate bias. Our approach

includes two key innovations: a novel optimization function and a

fairness-aware search space. By improving the default optimization

function of AutoML and incorporating fairness objectives, we are

able to mitigate bias with little to no loss of accuracy. Additionally,

we propose a fairness-aware search space pruning method for Au-

toML to reduce computational cost and repair time. Our approach,

built on the state-of-the-art Auto-Sklearn tool, is designed to reduce

bias in real-world scenarios. In order to demonstrate the effective-

ness of our approach, we evaluated our approach on four fairness

problems and 16 different ML models, and our results show a signif-

icant improvement over the baseline and existing bias mitigation

techniques. Our approach, Fair-AutoML, successfully repaired 60

out of 64 buggy cases, while existing bias mitigation techniques

only repaired up to 44 out of 64 cases.

CCS CONCEPTS

• Software and its engineering→ Search-based software en-

gineering; • Computing methodologies → Machine learning.
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1 INTRODUCTION

Recent advancements in machine learning have led to remarkable

success in solving complex decision-making problems such as job

recommendations, hiring employees, social services, and educa-

tion [2, 10, 11, 21, 22, 24, 38, 39, 51, 53, 55, 56, 63]. However, ML

software can exhibit discrimination due to unfairness bugs in the

models [3, 6]. These bugs can result in skewed decisions towards

certain groups of people based on protected attributes such as race,

age, or sex [30, 31].

To address this issue, the software engineering (SE) commu-

nity has invested in developing testing and verification strategies

to detect unfairness in software systems [1, 8, 30, 31, 62]. Addi-

tionally, the machine learning literature contains a wealth of re-

search on defining different fairness criteria for ML models and

mitigating bias [12, 20, 26, 37, 48, 50, 64, 65]. Various bias mitiga-

tion methods have been proposed to build fairer models. Some ap-

proachesmitigate data bias by adapting the training data [15, 16, 52];

some modify ML models during the training process to mitigate

bias [19, 32, 41, 58, 60], and others aim to increase fairness by chang-

ing the outcome of predictions [1, 62, 66].

Despite these efforts, current bias mitigation techniques often

come at the cost of decreased accuracy [6, 42]. Their effectiveness

varies based on datasets, fairness metrics, or the choice of protected

attributes [18, 25, 26, 37]. Hort et al. proposed Fairea [42], a novel

approach to evaluate the effectiveness of bias mitigation techniques,

which found that nearly half of the evaluated cases received poor

effectiveness. Moreover, evaluations by Chen et al. also showed

that in 25% of cases, bias mitigation methods reduced both ML

performance and fairness [18].

Recent works [34, 42, 60] have shown that parameter tuning

can successfully fix fairness bugs without sacrificing accuracy. By

finding the best set of parameters, parameter tuning can minimize

the error between the predicted values and the true values to reduce

bias. This helps to ensure that the model is not overly simplified or

too complex, which can lead to underfitting (high bias) or overfitting

(low accuracy), respectively. By tuning the parameters, we can find

the right balance between bias and accuracy, which leads to a model

that generalizes well to different data or fairness metric. However,

it is challenging to identify which parameter setting achieves the

best fairness-accuracy trade-off [34].

Recent advancements in AutoML technology [28, 29, 43] have

made it possible for both experts and non-experts to harness the

power of machine learning. AutoML proves to be an effective op-

tion for discovering optimal parameter settings; however, currently

there is a lack of focus on reducing bias within the AutoML tech-

niques. Thus, we pose the following research questions: Is it possible

to utilize AutoML for the purpose of reducing bias? Is AutoML effective

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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in mitigating bias? Does AutoML outperform existing bias reduction

methods? Is AutoML more adaptable than existing bias mitigation

techniques?

We introduce Fair-AutoML, a novel technique that utilizes Au-

toML to fix fairness bugs in machine learning models. Unlike exist-

ing bias mitigation techniques, Fair-AutoML addresses their limita-

tions by enabling efficient and fairness-aware Bayesian search to

repair unfair models, making it effective for a wide range of datasets,

models, and fairness metrics. The key idea behind Fair-AutoML is to

use AutoML to explore as many configurations as possible in order

to find the optimal fix for a buggy model. Particularly, Fair-AutoML

enhances the potential of AutoML for fixing fairness bugs in two

novel techniques: by generating a new optimization function that

guides AutoML to fix fairness bugs without sacrificing accuracy,

and by defining a new search space based on the specific input

to accelerate the bug-fixing process. Together, these contributions

enable Fair-AutoML to effectively fix fairness bugs across various

datasets and fairness metrics. We have implemented Fair-AutoML

on top of Auto-Sklearn [29], the state-of-the-art AutoML framework.

Fair-AutoML aims to effectively address the limitations of exist-

ing bias mitigation techniques by utilizing AutoML to efficiently

repair unfair models across various datasets, models, and fairness

metrics. We conduct an extensive evaluation of Fair-AutoML using

4 widely used datasets in the fairness literature [1, 31, 62] and 16

buggy models collected from a recent study [6]. The results demon-

strate the effectiveness of our approach, as Fair-AutoML successfully

repairs 60 out of 64 buggy cases, surpassing the performance of

existing bias mitigation techniques which were only able to fix up

to 44 out of 64 bugs in the same settings and training time.

Our main contributions are the following:

• We have proposed a novel approach to fix unfairness bugs

and retain accuracy at the same time.

• We have proposed methods to generate the optimization

function automatically based on an input to make AutoML

fixing fairness bugs more efficiently.

• We have pruned the search space automatically based on an

input to fix fairness bugs faster using AutoML.

• We have implemented our approach in a SOTA AutoML,

Auto-Sklearn [29]. The artifact is available here [33].

The paper is organized as follows: §2 describes the background,

§3 presents a motivation, §4 indicates the problem definition, §5

shows the Fair-AutoML approaches, §6 presents the our evaluation,

§7 discusses the limitations and future directions of Fair-AutoML,

§8 discusses the threats to validity of Fair-AutoML, §9 concludes,

and §10 describes the artifact.

2 BACKGROUND

We begin by providing an overview of the background and related

research in the field of software fairness.

2.1 Preliminaries

2.1.1 ML So�ware. Given an input dataset � split into a training

dataset �CA08= and a validation dataset �E0; , a ML software system

can be abstractly viewing as mapping problem"_,2 : G →~ from in-

puts G to outputs ~ by learning from �CA08= . ML developers aims to

search for a hyperparameter configuration _∗ and complementary

components 2∗ for model " to obtain optimal fairness-accuracy

on �E0; . The complementary components can be ML algorithms

combined with a classifier i.e., pre-processing algorithms.

2.1.2 AutoML. Given the search spaces Λ and � for hyperparame-

ters and complementary components, AutoML aims to find _∗ and

2∗ to obtain the lowest value of the cost function (Equation 1):

" = argmin
_∈Λ,2∈�

�>BC ("_∗,2∗, �E0; ) (1)

(_∗, 2∗) = argmin
(_,2 )

!>BB ("_,2 , �CA08=) (2)

2.1.3 Measures. We consider a problem, where each individual in

the population has a true label in ~ = {0, 1}. We assume a protected

attribute I = {0, 1}, such as race, sex, age, where one label is priv-

ileged (denoted 0) and the other is unprivileged (denoted 1). The

predictions are ~̂ ∈ {0, 1} that need to be not only accurate with

respect to ~ but also fair with respect to the protected attribute I.

Accuracy Measure. Accuracy is given by the ratio of the number

of correct predictions by the total number of predictions.

Accuracy = (# True positive + # True negative) / # Total

Fairness Measure. We use four ways to define group fairness

metrics, which are widely used in fairness literature [4, 5, 30]:

The Disparate Impact (DI) is the proportion of the unprivileged

group with the favorable label divided by the proportion of the

privileged group with the favorable label [26, 64].

�� =
%A [~̂=1 |I=0]
%A [~̂=1 |I=1]

The Statistical Parity Difference (SPD) quantifies the disparity be-

tween the favorable label’s probability for the unprivileged group

and the favorable label’s probability for the privileged group [12].

(%� = %A [~̂ = 1|I = 0] − %A [~̂ = 1|I = 1]

The Equal Opportunity Difference (EOD) measures the disparity

between the true-positive rate of the unprivileged group and the

privileged group.

)%'D = %A [~̂ = 1|~ = 1, I = 0];)%'? = %A [~̂ = 1|~ = 1, I = 1]

�$� = )%'D −)%'?

The Average Absolute Odds Difference (AOD) is the mean of the

difference of true-positive rate and false-positive rate among the

unprivileged group and privileged group [37].

�%'D = % [~̂ = 1|~ = 0, I = 0]; �%'? = % [~̂ = 1|~ = 0, I = 1]

�$� =
1
2 ∗ |�%'D − �%'? | + |)%'D −)%'? |

To use all the metrics in the same setting, DI has been plotted in

the absolute value of the log scale, and SPD, EOD, AOD have been

plotted in absolute value [16, 42]. Thus, the bias score of a model is

measured from 0, with lower scores indicating more fairness.

2.2 Related Work

2.2.1 Bias Mitigation. SE and ML researchers has developed var-

ious bias mitigation methods to increase fairness in ML software

divided into three categories [30, 40]:

Pre-processing approaches reduce bias by pre-processing the

training data. For instance, Fair-SMOTE [15] addresses data bias by

removing biased labels and balancing the distribution of positive

and negative examples for each sensitive attribute. Reweighing [48]
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decreases bias by assigning different weights to different groups

based on the degree of favoritism of a group. Disparate Impact

Remover [26] is a pre-processing bias mitigation technique that

aims to reduce bias by editing feature values.

In-processing approaches reduce bias by modifying ML models

during the training process i.e., Parfait-ML [60] present a search-

based solution to balance fairness and accuracy by tuning hyperpa-

rameter to approximate the twined Pareto curves. MAAT [19] is an

ensemble approach aimed at improving the fairness-performance

trade-off in ML software. Instead of combining models with the

same learning objectives as traditional ensemble methods, MAAT

merges models that are optimized for different goals.

Post-processing approaches change the outcome of prediction

to reduce bias. This technique unfavors privileged groups’ instances

and favors those of unprivileged groups lying around the decision

boundary. For example, Equalized Odds [37] reduces the value of

EOD by modifying the output labels. Fax-AI [35] eliminates di-

rect discrimination in machine learning models by limiting the

use of certain features, thereby preventing them from serving as

surrogates for protected attributes. Reject Option Classification [49]

prioritizes instances from the privileged group over those from the

unprivileged group that are situated on the decision boundary with

high uncertainty.

Previous efforts have made significant progress in reducing bias;

however, they come at the cost of decreased accuracy and their

results can vary depending on the datasets and fairness metrics. Our

proposal, Fair-AutoML, aims to strike a balance between accuracy

and bias reduction and demonstrate generalizability across various

datasets and metrics.

2.2.2 Search Space Pruning. Search space pruning involves reduc-

ing the size or complexity of the search space in optimization or

machine learning tasks. Pruning techniques are employed to accel-

erate the optimization process of AutoML by eliminating unpromis-

ing or redundant options, thus focusing computational resources

on more promising areas of the search space. For example, Feurer

et al. [29] introduce Auto-Sklearn 2.0, a novel approach aimed at

enhancing the performance of Auto-Sklearn. This advancement

involves constraining the search space to exclusively comprise it-

erative algorithms, while eliminating feature preprocessing. This

strategic adjustment streamlines the implementation of successive

halving, as it reduces the complexity to a single fidelity type: the

number of iterations. Otherwise, the incorporation of dataset sub-

sets as an alternative fidelity would require additional consideration.

Another innovative contribution comes from Cambronero et al.,

who introduces AMS [13]. This method capitalizes on the wealth of

source code repositories to streamline the search space for AutoML.

Notably, AMS harnesses the power of unspecified complementary

and functionally related API components. By leveraging these com-

ponents, the search space for AutoML is pruned effectively. Diverg-

ing from prior research efforts, Fair-AutoML distinguishes itself by

leveraging data characteristics to effectively trim down the search

space. Notably, existing techniques in search space pruning primar-

ily target accuracy enhancement within AutoML. In contrast, our

innovative pruning methodology within Fair-AutoML is uniquely

directed towards repairing unfair models.

Inverted trade-off 
regions

Win-win 
region

Good 
trade-off
region

Bad
trade-off
region

Lose-lose 
region

Baseline

Fairness

A
cc
ur
ac
y

Original Model

Model with 
mutation degree: 

100%

Figure 1: Baseline fairness-accuracy trade-off [42]

2.2.3 AutoML Extension. AutoML aims to automate the process

of building a high-performing ML model, but it has limitations.

It can be costly, time-consuming to train, and produces complex

models that are difficult to understand. To address these limita-

tions, software engineering researchers have developed methods to

enhance AutoML performance, such as AMS [13] and Manas [54].

AMS utilizes source code repositories to create a new search space

for AutoML, while Manas mines hand-developed models to find a

better starting point for AutoML. The goal of these methods is to

improve AutoML to maximize the accuracy. Different from these

methods, Fair-AutoML, built on top of Auto-Sklearn [29], is the first

to focus on repairing unfair models.

3 MOTIVATION

The widespread use of machine learning in software development

has brought attention to the issue of fairness in ML models. Al-

though various bias mitigation techniques have been developed

to address this issue, they have limitations. These techniques suf-

fer from a poor balance between fairness and accuracy [42], and

are not applicable to a wide range of datasets, metrics, and mod-

els [25, 26, 37]. To gain a deeper understanding of these limitations,

we evaluate six different bias mitigation techniques using four fair-

ness metrics, four datasets, and six model types. The evaluation

criteria are borrowed from Fairea [42] and are presented in Table 1.

Fairea is designed to assess the trade-off between fairness and

accuracy of bias mitigation techniques. The methodology of Fairea

is demonstrated in Figure 1, where the fairness and accuracy of

a bias mitigation technique on a dataset are displayed in a two-

dimensional coordinate system. The baseline is established by con-

necting the fairness-accuracy points of the original model and the

mitigation models on the dataset. Fairea evaluates the performance

of the mitigation technique by altering the original model predic-

tions and replacing a random subset of the predictions with other

labels. The mutation degree ranges from 10% to 100% with a step-

size of 10%. The baseline classifies the fairness-accuracy trade-off

of a bias mitigation technique into five regions: lose-lose trade-off

(lose), bad trade-off (bad), inverted trade-off (inv), good trade-off

(good), and win-win trade-off (win). A technique reducing both

accuracy and fairness would fall into the lose-lose trade-off region.

If the trade-off is worse than the baseline, it would fall into the bad

trade-off region. If the trade-off is better than the baseline, it would

fall into the good trade-off region. If a bias mitigation method simul-

taneously decreases both bias and accuracy, it would fall into the
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Table 1: Mean proportions of mitigation cases that that fall

into each mitigation region

Criteria Lose Bad Inv Good Win

Metric

DI 7% 31% 5% 43% 14%

SPD 4% 36% 6% 40% 14%

EOD 23% 15% 14% 40% 8%

AOD 9% 30% 5% 40% 16%

Dataset

Adult [44] 18% 6% 14% 55% 7%

Bank [45] 9% 44% 7% 23% 17%

German [46] 6% 36% 2% 46% 10%

Titanic [47] 11% 26% 3% 43% 17%

Mean 11% 28% 7% 41% 13%
Bad: bad trade-off region, Lose: lose-lose trade-off region, Inv: inverted trade-off

region, Good: good trade-off region, Win: win-win trade-off region.

inverted trade-off region. If the technique improves both accuracy

and fairness, it would fall into the win-win trade-off region.

The results of the region classification of six bias mitigation tech-

niques - Reweighing [48], Disparate Impact Remover [26], Parfait-

ML [60], Equalized Odds [37], FaX-AI [35], Reject Option Classifi-

cation [49] - are shown in Table 1. The evaluation was conducted

on 64 buggy cases using different criteria such as fairness metrics

and datasets. The case is identified as buggy when it falls below the

Fairea baseline. The mean percentage of each technique falling into

the corresponding regions is listed in each cell. The mean results

provide a general overview of the current state of bias mitigation

techniques. Further details on the performance of each individual

bias mitigation technique can be found in Table 3 of our evaluation.

Table 1 illustrates that the majority of existing bias mitigation

techniques have a poor fairness-accuracy trade-off across different

datasets, fairness metrics, and classification models. Specifically,

39% of the cases show that these techniques perform worse than

the original model, with 28% of the cases resulting in a poor trade-

off and 11% resulting in a decrease in accuracy and an increase

in bias. Additionally, Table 1 shows that the performance of these

techniques varies depending on the input, as demonstrated by the

different results obtained when using different datasets or fainess

metrics [25, 26, 37]. For example, the bias mitigation techniques

had a high performance in 62% of the cases using the Adult dataset

(55% for good trade-off region and 7% for win-win trade-off region),

but only achieved 40% good effectiveness in the Bank dataset.

Hort et al. [42] have demonstrated that through proper parameter

tuning, it is possible to address fairness issues in machine learning

models without sacrificing accuracy. However, determining the

optimal fairness-accuracy trade-off can be a challenge. Although

AutoML can be effective in finding the best parameter settings, it

does not specifically address bias reduction. This motivates the de-

velopment of Fair-AutoML, a novel approach that utilizes Bayesian

optimization to tune parameters and address fairness issues with-

out hindering accuracy. Fair-AutoML is evaluated for its generality

across different fairness metrics and datasets, and unlike other bias

mitigation methods, it can be applied to any dataset or metric.

This work focuses on improving fairness quantitatively of buggy

models instead of targeting a specific type of datasets and models.

Our method is general since we utilize the power of AutoML to try

as many configurations as possible to obtain the optimal fix; there-

fore, our method can work on various types of datasets and metrics.

The rest of this work describes our approach, Fair-AutoML, that

addresses the limitations of both existing bias mitigation methods

and AutoML. As a demonstration, Fair-AutoML achieved good per-

formance in 100% of the 16 buggy cases in the Adult dataset, while

75% of the mitigation cases showed a good fairness-accuracy trade-

off, and the remaining 25% exhibited an improvement in accuracy

without sacrificing bias reduction.

4 PROBLEM DEFINITION

This work aims to utilize AutoML to address issues of unfairness in

ML software by finding a new set of configurations for the model

that achieves optimal fairness-accuracy trade-off. Because fairness

is an additional consideration beyond accuracy, the problem be-

comes a multi-objective optimization problem, requiring a new cost

function that can optimize both fairness and accuracy simultane-

ously. To achieve this, we use a technique called weighted-sum

scalarization (Equation 3) [23], which allows us to weigh the impor-

tance of different objectives and create a single scalar cost function.

� =

=∑

8=1

28 ∗ V8 (3)

where, V8 denotes the relative weight of importance of 28 :
=∑

8=1

V8 = 1 (4)

In this work, we use a cost function (or objective function) that

is a weighted-sum scalarization of two decision criteria: bias and

accuracy. This cost function, as shown in Equation 5, assign weights

to bias and accuracy in the cost function allow us to adjust the trade-

off between the two criteria according to the specific problems:

�>BC ("_,2 ,D(I)) = V ∗ 5 + (1 − V) ∗ (1 − 0) (5)

We analyze the output of the buggy ML software (including bias

and accuracy) to create a suitable cost function for each input.

By analyzing the output, we are able to automatically estimate

the weights of the cost function in order to balance fairness and

accuracy for a specific problem. To the best of our knowledge, this

is the first work that applies output analysis of the software to

AutoML to repair unfair ML models.

However, using AutoML can be costly and time-consuming. To

address this issue, we propose a novel method that automatically

create new search spaces Λ∗ and �∗ based on different inputs to

accelerate the bug-fixing process of AutoML. These new search

spaces are smaller in size compared to the original ones, |Λ∗ | < |Λ|

and |� ∗ | < |� |. Particularly, as shown in Equation 6, Fair-AutoML

takes as input a ML model and a dataset with a protected attribute

I, and aims to find _∗ and 2∗ in the smaller search space, in order

to minimize the cost value.

" = argmin
_∗∈Λ∗,2∗∈�∗

�>BC ("_∗,2∗, �E0; (I)) (6)

The technique of search space pruning in Fair-AutoML utilizes data

characteristics to enhance bug-fixing efficiency. By shrinking the

search spaces based on input analysis, Fair-AutoML can find better

solutions more quickly. A set of predefined modifications to the

ML model are pre-built and used as a new search space for new

input datasets, reducing the time needed to fix buggy models. Our

approach is based on previous works in AutoML [29], but updated

and modified to tackle bias issues. To the best of our knowledge,
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Figure 2: An Overview of Fair-AutoML Approach

we are the first to propose a search space pruning technique for

fairness-aware AutoML.

5 FAIR-AUTOML

This section describes a detailed description of key components of

Fair-AutoML (Figure 2): the dynamic optimization function (steps

1-3) and the search space pruning (steps 4-13).

5.1 Dynamic Optimization for Bias Elimination

We strive to eliminate bias in unfair models by utilizing Equation 5

as the objective function and determining the optimal value of V to

minimize the cost function. In this section, we propose an approach

to automatically estimate the optimal value of V for a specific dataset

and a targeted model. This method ensures efficient correction of

fairness issues while maintaining high predictive accuracy.

5.1.1 Upper bound of the Cost Function. To estimate the optimal

value of V , the first step is to determine the upper bound of the cost

function. This can be done by using a "pseudo-model", which is

the 100% mutation degree model [42], as shown in the Figure 1. In

other words, the pseudo-model always achieves the accuracy on

any binary classification problem as follows:

00 =<0G (% (. = 1), % (. = 0)) (7)

Given an input, the pseudo-model achieves an accuracy of 00
and a bias value of 50 on that input. We define the cost function,

�>BC , of the buggy ML model with accuracy 0 and bias value 5 on

the input. As AutoML tries different hyperparameter configurations

to fix the model, the values of 0 and 5 may change over time. The

upper bound of the cost function is defined as Equations 8 and 9:

�>BC ("_,2 ,D(I)) < V ∗ 50 + (1 − V) ∗ (1 − 00) (8)

⇔ V ∗ 5 + (1 − V) ∗ (1 − 0) < V ∗ 50 + (1 − V) ∗ (1 − 00) (9)

The upper bound of the cost function is defined with the goal of

repairing a buggy model so that its performance falls within a

good/win-win trade-off region of fairness and accuracy. In other

words, the accuracy of the repaired model must be higher than the

accuracy of the pseudo-model. The repaired model must be better

than the pseudo-model in terms of the cost function’s value. Since

the pseudo-model has zero bias (50 = 0), the upper bound of the

cost function is defined as follows (Equation 10):

V ∗ 5 + (1 − V) ∗ (1 − 0) < (1 − V) ∗ (1 − 00) (10)

5.1.2 Lower Bound of V . In this work, we desire to optimize the

value of V in order to minimize bias as much as possible. The cost

function used by Fair-AutoML is designed to balance accuracy and

fairness, and increasing V will place more emphasis on reducing

bias. However, simply setting V to its highest possible value is

not a viable option, as it may lead to low predictive accuracy and

overfitting. We cannot accept models with poor predictive accuracy

regardless of their low bias [36, 57]. To overcome this challenge,

we aim to find the lower bound of V , which can be done based on

the upper bound of the cost function. From Equation 10, we get:

V <

0 − 00

0 − 00 + 5
(11)

However, if the value of V is smaller than 0−00
0−00+5

, the optimiza-

tion function �>BC will always meet its upper bound condition. If

the value of V always satisfies the upper bound condition of the cost

function regardless of accuracy and fairness, we can obtain a better

optimization function by either increasing accuracy or decreasing

bias. In this case, we cannot guide AutoML to produce a lower bias.

Therefore, to guide AutoML produces an output with improved

fairness, we set a lower bound for V as Equation 12:

V ≥
0 − 00

0 − 00 + 5
(12)

The intuition being that our method aims to increase the chance

for AutoML to achieve better fairness. However, by setting V <

0−00
0−00+5

and 0 > 00 (we aim to find a model which has better

accuracy than the pseudo-model), any value of bias (f) can satisfy

upper bound condition of the cost function, which lower chance

to obtain fairer models of AutoML. To increase this chance, we set

V ≥
0−00

0−00+5
and 0 > 00. In this case, AutoML need to find better

models that has lower bias to satisfy Equation 10. In other words,

this lower bound condition indirectly forces bayesian optimization

to search for lower bias models.

5.1.3 V Estimation. The final step is estimating the value of V

based on its lower bound condition. Suppose that the buggy model

achieves an accuracy of 01 and a bias value of 51 on that input. From

the begining, we have: 0 = 01 and 5 = 51. In that time, the lower

bound of V is ! =
01−00

01−00+51
, so we have:

V = ! + :, : ∈ [0, 1 − !] (13)

We present a greedy algorithm for estimating the value of V , which

is detailed in Algorithm 1. Given a dataset � with a protected

attribute I and a buggy model " (Line 1), we start by measuring

the lower bound of V . Next, we run Fair-AutoML on the input under

time constraint t with a value of V set to 01−00
01−00+51

(Line 2-8). As

the algorithm searches, whenever Fair-AutoML finds a candidate

model that meets the condition �>BC < �>BC0 (Lines 10-12), the

value of V is slightly increased by U (Line 10-12). If after N tries,

Fair-AutoML cannot find a model that satisfies the condition, the

final value of V is set to V = V - U for the remaining search time

to prevent overfitting from an excessively high value of V (Lines

13-15). The algorithm returns the best model found (Line 16).
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Algorithm 1 Greedy Weight Identifier

1: Input: a dataset � with protected attribute I, buggy model"

hyperparametered by _, the increment value U , the searching

time C and the threshold N

2: V = 01−00
01−00+51

3: �>BC ("_,2 ,D(I)) = V ∗ 5 + (1 − V) ∗ (1 − 0)

4: �>BC0 ("_,2 ,D(I)) = (1 − V) ∗ (1 − 00)

5: count = 0

6: checker = False

7: while C do

8: "_∗,2∗ = argmin
_∈Λ

�>BC ("_,2 ,D(I))

9: count = count + 1

10: if �>BC ("_,2 ,D(I)) < �>BC0 ("_,2 ,D(I)) then

11: if checker = False then

12: V = V + U

13: count = 0

14: if 2>D=C ≥ # and checker = False then

15: V = V - U

16: checker = True

17: return"_∗

5.2 Search Space Pruning for Efficient Bias
Elimination

We propose a solution to speed up the Bayesian optimization pro-

cess in Fair-AutoML by implementing search space pruning. This

technique takes advantage of data characteristics to automatically

reduce the size of the search space in AutoML, thus improving its

efficiency. Our approach includes two phases: the offline phase and

the online phase. The offline phase trains a set of inputs multiple

times to gather a collection of hyperparameters and complementary

components for each input, forming a pre-built search space. In the

online phase, when a new input is encountered, it is matched against

the inputs stored in our database to find a matching pre-built search

space, which is then utilized to repair the buggy model. This ap-

proach effectively replaces the original search space of Fair-AutoML,

making the Bayesian optimization processmuch faster. Search space

pruning has already been successfully applied before [13, 28]; how-

ever, this is the first application of data characteristics to prune the

search space for fairness-aware AutoML.

5.2.1 Offline Phase. This phase constructs a set of search spaces for

Fair-AutoML based on different inputs. It is important to note that

the input format in the offline phase must match that of the online

phase, which includes a dataset with a protected attribute and a

ML model. This ensures that the pre-built search spaces created in

the offline phase can be effectively utilized in the online phase.

Input. In the offline phase, we collect a set of inputs to build

search spaces for Fair-AutoML. The inputs are obtained as follows.

Firstly, we mine machine learning datasets from OpenML, consider-

ing only the 3425 active datasets that have been verified to work

properly. Secondly, to ensure that the mined datasets are relevant

to the fairness problem, we only collect datasets that contain at

least one of the following attributes: age, sex, race [17]. In total, we

collected 231 fairness datasets. Thirdly, for each mined dataset, we

use all available protected attributes. For example, when dealing

with datasets that contain multiple protected attributes, such as

Algorithm 2 Database Building

1: Input: a dataset � with protected attribute I, a model" with

default hyperparameters _. Running time t.

2: d = ∅

3: dev = 1

4: database = {}

5: space = {}

6: count = 0

7: while count ≤ n do

8: count = count + 1

9: while t do

10: "_∗ = argmin�>BC ("_,D(I))

11: 3 = 3 ∪"_∗

12: kBestPipelines = top_k(d)

13: mBestComponents = top_m(kBestPipelines)

14: for model ∈ kBestPipelines do

15: for para ∈ model do

16: space[para] = space[para]∪[para.val]

17: for para ∈ space do

18: if para is numerical then

19: no_outliers = ∅

20: for i ∈ space[para] do

21: if |8 − B?024 [?0A0] | < 34E ∗ f (B?024 [?0A0]) then

22: no_outliers = no_outliers ∪ space[para][i]

23: space[para] = [min(no_outliers), max(no_outliers)]

24: database[input] = (space, mBestComponents)

25: return database

the Adult dataset that includes sex and race as protected attributes,

we treat them as distinct inputs for the dataset. Finally, we use the

default values for the hyperparameters of the input ML model in

the offline phase, as we do not know the specific values that will be

used in the online phase.

Database building. To build a pre-defined search space database,

we use the algorithm outlined in Algorithm 2 to obtain a pre-built

search space for each collected input in order to fix the buggymodel.

This process involves training a fairness dataset with a specific pro-

tected attribute and ML model multiple times using Fair-AutoML,

collecting the top : best pipelines found, and extracting parameters

from these pipelines. In particular, we use Fair-AutoML to train the

fairness dataset with a specific protected attribute and a ML model

for = iterations (Line 7-11). We then gather the top : best pipelines,

including a classifier and complementary components, found by

Fair-AutoML according to the optimization function’s value (Line

12). This results in : ∗ = total pipelines. From these pipelines, we

extract and store the m most frequently used complementary com-

ponents in the database (Line 13). For each classifier parameter, we

also store its value (Lines 14-16). This results in k∗n values being

stored for each hyperparameter. If a hyperparameter is categorical

and its values are sampled from a set of different values, we store all

its unique values in the database. If a hyperparameter is numerical

and its values are sampled from a uniform distribution, we remove

any outliers and store the range of values from the minimum to the

maximum in the database (Lines 17-23). After this process, we have

collected the pre-built search space for the input (Lines 24-25). We

believe that two similar inputs may have similar buggy models and
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Algorithm 3 Input Matching

1: Input: a input dataset � with the protected attribute I, the

number of data points ? , the number of features 5 , lower bound

!, a buggy model" , and a database.

2: dist = {}

3: for 38 in database do

4: dist[38 ] = |58 − 5 | + |?8 − ? |

5: similarDataset = min(dist, key=dist.get)

6: dist = {}

7: for I8 in similarDataset do

8: dist[38 ] = |!8 − ! |

9: similarAttribute = min(dist, key=dist.get)

10: similarModel = M with default parameter

11: return similarDataset, similarAttribute, similarModel

fixes, so the pre-built search space is built based on the best mod-

els found by Fair-AutoML from similar inputs, making it a reliable

solution for fixing buggy models.

5.2.2 Online Phase. This phase utilizes a pre-built search space

from the database to fix a buggy model for a given dataset by

replacing the original search space with the pre-built one.

Search space pruning. Our approach of search space pruning in

Fair-AutoML improves the bug fixing performance by reducing the

size of the hyperparameter tuning space. Algorithm 3 is used to

match the input dataset, protected attribute, and ML model to the

most similar input in the database. Firstly, data characteristics such

as the number of data points and features are used to match the new

dataset with the most similar one in the database [28]. L1 distance

is computed between the new dataset and each mined dataset in

the space of data characteristics to determine the closest match.

We consider that the most similar dataset to the new dataset is

the nearest one (Line 2-5). Secondly, we compute the lower bound

! =
01−00

01−00+51
of V of the new input. We then estimate the lower

bound of V of all the protected attributes of the matched dataset

and select the attribute whose lower bound is closest to ! (Line 6-9).

Lastly, two similar inputs must use the sameML algorithm (Line 10).

Thematching process is carried out in the order of dataset matching,

protected attribute matching, and ML algorithm matching. The pre-

built search space of the similar input is then used as the new search

space for the new input.

6 EVALUATION

In this section, we describe the design of the experiments to evalu-

ate the efficient of Fair-AutoML. We first pose research questions

and discuss the experimental details. Then, we answer research

questions regarding the efficiency and adaptability of Fair-AutoML.

RQ1: Is Fair-AutoML effective in fixing fairness bugs? To

answer this question, we quantify the number of fairness bugs

that Fair-AutoML is able to repair compared to existing methods,

allowing us to assess the capability of an AutoML system in fixing

fairness issues.

RQ2: Is Fair-AutoML more adaptable than existing bias

mitigation techniques? The adaptability of a bias mitigation tech-

nique indicates its performance across a diverse range of dataset-

s/metrics. So, we analyze the effectiveness of Fair-AutoML and

existing bias mitigation techniques on different dataset/metrics to

assess the adaptability of an AutoML system on fix fairness bugs.

RQ3: Are dynamic optimization function and search space

pruning effective in fixing fairness bugs? To answer this ques-

tion, we assess the performance of Auto-Sklearn, both with and

without the dynamic optimization function and search space prun-

ing, to demonstrate the impact of each proposed approach.

6.1 Experiment

6.1.1 Benchmarks. We evaluated our method using real-world fair-

ness bugs sourced from a recent empirical study [6], with our bench-

mark consisting of 16 models collected from Kaggle covering five

distinct types: XGBoost (XGB), Random Forest (RF), Logistic Re-

gression (LRG), Gradient Boosting (GBC), Support Vector Machine

(SVC). We use four popular datasets for our evaluation [10, 61, 62]:

The Adult Census (race) [44] comprised of 32,561 observations

and 12 features that capture the financial information of individuals

from the 1994 U.S. census. The objective is to predict whether an

individual earns an annual income greater than 50K.

The Bank Marketing (age) [45] has 41,188 data points with 20

features including information on direct marketing campaigns of

a Portuguese banking institution. The classification task aims to

identify whether the client will subscribe to a term deposit.

The German Credit (sex) [46] has 1000 observations with 21

features containing credit information to predict good or bad credit.

The Titanic (sex) [47] has 891 data points with 10 features con-

taining individual information of Titanic passengers. The dataset is

used to predict who survived the Titanic shipwreck.

6.1.2 Evaluated Learning Techniques. We examined the perfor-

mance of Fair-AutoML and other supervised learning methods ad-

dressing discrimination in binary classification including all three

types of bias mitigation techniques and Auto-ML techniques.

Bias mitigation methods. We investigate all three types of bias

mitigation methods: pre-processing, in-processing, post-processing.

We select widely-studied bias mitigation methods for each category:

• The pre-processing includes Reweighing (R) [48], Disparate

Impact Remover (DIR) [26].

• The in-processing includes Parfait-ML (PML) [60].

• The post-processing includes Equalized Odds (EO) [37],

FaX-AI (FAX) [35], Reject Option Classification (ROC) [49].

Auto-Sklearn. We explore the efficiency ofAuto-Sklearn (AS) [29]

on mitigating bias in unfair model. Although, Auto-Sklearn does

not seek to decrease bias, we compare its performance with Fair-

AutoML to demonstrate the efficient of our techniques in guiding

Auto-ML to repair fairness bugs.

Fair-AutoML. We create 4 versions of Fair-AutoML in this evalu-

ation representing for Fair-AutoML with different cost functions:

• T1 uses V ∗ �� + (1 − V) ∗ (1 − 022DA02~) as a cost function.

• T2 uses V ∗(%� + (1− V) ∗ (1−022DA02~) as a cost function.

• T3 uses V ∗�$� + (1− V) ∗ (1−022DA02~) as a cost function.

• T4 uses V ∗�$� + (1− V) ∗ (1−022DA02~) as a cost function.

6.1.3 Experimental Configuration. Experiments were conducted

using Python 3.6 on Intel Skylake 6140 processors. Fair-AutoML

leverages the capabilities of Auto-Sklearn [29], taking advantage of
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Table 2: Trade-off assessment results of Fair-AutoML, Auto-Sklearn, and mitigation techniques

Model Metric T1 T2 T3 T4 AS R DIR PML EO FAX ROC Model Metric T1 T2 T3 T4 AS R DIR PML EO FAX ROC
Acc 0.010 0.001 0.005 -0.003 0.016 0.009 0.004 0.008 -0.006 0.002 -0.047 Acc -0.013 -0.022 -0.009 -0.032 -0.001 -0.056 -0.055 -0.054 -0.057 -0.057 -0.061
DI 0.096 0.011 0.118 0.095 0.058 0.337 inv inv 0.292 0.000 0.445 DI 0.190 0.410 0.212 0.179 0.040 0.569 0.326 lose 0.375 bad 0.318
SPD 0.023 0.024 0.038 0.048 0.016 0.055 inv inv 0.047 inv 0.055 SPD 0.054 0.075 0.029 0.059 0.005 0.097 0.079 bad 0.083 0.076 0.072
EOD 0.019 inv 0.014 0.020 0.008 inv inv inv 0.041 inv lose EOD 0.048 0.020 0.044 0.049 lose 0.057 0.056 0.060 0.067 0.052 0.059

RF

AOD 0.028 inv 0.030 0.035 0.021 0.005 0.001 inv 0.051 0.007 bad

LRG

AOD 0.085 0.075 0.079 0.089 0.039 0.096 0.094 0.091 0.103 0.094 0.095
Acc -0.019 -0.052 -0.017 -0.015 -0.001 -0.001 -0.018 -0.005 -0.035 0.001 -0.056 Acc -0.023 -0.046 -0.014 -0.034 0.002 -0.006 -0.011 -0.034 -0.018 -0.001 -0.059
DI 0.183 0.148 0.143 0.156 0.004 0.378 lose lose 0.330 inv 0.456 DI 0.124 0.188 0.104 0.147 inv 0.387 0.027 lose 0.227 0.076 0.438
SPD 0.028 0.074 0.023 0.030 0.003 0.058 lose lose 0.051 inv 0.054 SPD bad 0.055 0.012 0.029 inv 0.058 bad lose 0.035 0.011 0.047
EOD 0.036 0.041 0.037 0.030 lose lose lose 0.003 0.044 inv lose EOD bad 0.025 0.013 0.024 inv lose lose lose 0.037 0.010 lose

A
d
u
lt
C
en
su
s

XGB

AOD 0.055 0.064 0.047 0.053 0.017 0.009 lose 0.010 0.066 0.020 bad

GBC

AOD 0.037 0.055 0.041 0.050 0.018 0.031 0.031 lose 0.063 0.041 bad

Acc -0.012 -0.023 -0.001 -0.007 0.000 -0.008 -0.014 -0.008 -0.034 0.001 -0.082 Acc -0.001 -0.008 0.000 0.002 0.000 0.001 -0.080 -0.005 -0.075 0.000 -0.143
DI 0.103 0.224 0.031 0.038 0.000 0.210 lose bad bad 0.129 bad DI 0.158 0.236 0.166 0.097 lose 0.312 bad bad bad 0.016 bad
SPD 0.035 bad 0.007 0.027 lose 0.065 bad 0.031 bad 0.021 bad SPD 0.032 0.051 0.028 0.021 lose 0.053 bad bad bad 0.002 bad
EOD lose bad lose lose lose lose lose 0.029 bad 0.001 bad EOD lose lose 0.003 0.012 lose inv inv 0.054 bad inv inv

RF

AOD 0.033 0.039 0.032 0.032 0.016 bad 0.020 0.046 bad 0.031 bad

XGB2

AOD 0.023 0.018 0.026 0.027 lose inv inv 0.040 bad 0.014 bad
Acc -0.002 0.002 0.007 0.000 -0.001 -0.007 -0.019 -0.005 -0.058 0.003 -0.018 Acc -0.003 -0.007 0.014 0.011 -0.002 0.000 -0.066 -0.034 -0.058 0.001 -0.104
DI 0.098 0.348 0.114 0.092 lose 0.222 0.174 bad bad 0.067 0.183 DI 0.010 0.069 0.011 0.014 lose 0.332 bad bad bad inv bad
SPD 0.023 0.062 0.023 0.020 lose 0.042 bad 0.029 bad 0.013 bad SPD lose 0.028 inv inv lose 0.052 bad bad bad inv bad
EOD 0.021 inv 0.011 0.018 lose lose lose 0.064 bad inv lose EOD lose lose inv inv lose inv lose bad bad inv inv

B
an
k
M
ar
k
et
in
g

XGB1

AOD 0.043 0.040 0.043 0.046 lose lose 0.038 0.054 bad 0.020 0.043

GBC

AOD 0.014 0.023 0.027 0.025 lose 0.017 lose bad bad 0.012 bad

Acc -0.020 -0.027 -0.012 -0.012 -0.011 -0.016 -0.007 -0.016 -0.529 -0.004 -0.446 Acc -0.011 -0.022 -0.019 -0.015 -0.007 -0.013 -0.009 -0.044 -0.042 -0.012 -0.203
DI bad 0.076 lose 0.060 lose 0.066 0.039 0.076 0.095 bad bad DI 0.109 0.130 0.103 0.108 0.035 bad bad bad bad 0.111 bad
SPD bad 0.052 lose 0.039 lose 0.044 0.025 0.052 0.068 bad bad SPD 0.077 0.092 0.070 0.078 0.021 bad bad bad bad 0.078 bad
EOD 0.044 0.062 0.045 0.059 0.033 0.054 0.042 0.079 0.064 0.023 bad EOD 0.101 0.101 0.101 0.081 0.068 0.039 0.039 bad 0.107 0.092 bad

RF

AOD lose bad lose lose lose lose lose 0.015 0.044 lose bad

SVC

AOD 0.019 0.034 bad 0.027 lose lose lose bad 0.059 0.016 bad
Acc 0.003 -0.009 -0.014 -0.017 -0.016 -0.028 -0.026 0.005 -0.043 -0.006 -0.443 Acc 0.001 0.000 0.010 -0.005 0.000 0.005 0.009 -0.010 -0.002 -0.049 -0.420
DI 0.070 0.091 0.119 0.101 bad bad bad 0.051 bad 0.035 lose DI 0.112 0.104 0.065 0.123 0.038 0.071 0.046 0.160 0.150 0.135 bad
SPD 0.050 0.065 0.082 0.069 bad 0.060 0.048 0.038 bad 0.025 bad SPD 0.072 0.075 0.043 0.090 0.027 0.047 0.028 0.120 0.111 0.098 bad
EOD 0.069 0.074 0.073 0.083 0.036 0.064 0.064 0.103 0.091 0.055 bad EOD 0.104 0.080 0.085 0.076 0.066 0.066 0.066 0.128 0.115 0.002 bad

G
er
m
an

C
re
d
it

XGB

AOD 0.020 0.020 0.041 0.037 lose bad bad 0.015 0.064 bad bad

KNN

AOD 0.017 0.011 inv 0.034 lose inv inv 0.072 0.065 0.035 bad

Acc -0.098 -0.130 -0.129 -0.128 -0.014 -0.166 -0.021 -0.010 -0.179 0.005 -0.178 Acc -0.035 -0.076 -0.136 -0.126 0.065 -0.139 -0.015 -0.048 -0.189 -0.023 -0.165
DI 1.549 1.864 1.848 1.849 lose 0.536 0.160 lose 2.024 0.449 2.303 DI 0.501 0.885 1.411 1.303 0.092 0.385 0.038 bad 1.769 bad 1.991
SPD 0.395 0.571 0.551 0.545 lose bad bad lose bad 0.153 0.651 SPD 0.121 0.275 0.462 0.447 inv bad bad 0.285 bad 0.187 0.641
EOD 0.274 0.404 0.445 0.446 lose lose lose lose 0.481 0.045 bad EOD bad bad bad bad 0.058 lose lose 0.280 bad 0.116 0.426

RF

AOD 0.477 0.556 0.534 0.601 0.062 bad 0.133 0.097 0.618 0.336 bad

GBC

AOD 0.183 0.305 0.467 0.445 0.176 bad 0.081 0.374 0.568 0.306 bad
Acc -0.021 -0.084 -0.091 0.000 -0.007 -0.159 0.015 0.009 -0.227 -0.023 -0.152 Acc -0.079 -0.101 -0.099 -0.110 -0.019 -0.129 -0.006 0.008 -0.157 0.009 -0.159
DI 0.743 1.619 1.673 0.149 0.086 0.597 0.214 0.643 bad bad 2.557 DI 1.364 1.701 1.470 1.663 lose 0.671 0.203 0.539 1.811 Inv 2.172
SPD 0.101 0.552 0.597 0.113 0.063 bad 0.007 0.115 bad 0.312 0.785 SPD 0.280 0.542 0.406 0.491 lose bad 0.065 0.051 0.567 Inv 0.642
EOD bad 0.467 0.557 0.021 lose lose 0.009 0.171 bad 0.275 0.623 EOD bad 0.400 0.285 0.389 lose lose lose 0.058 0.473 Inv 0.423

T
it
an
ic

LRG

AOD 0.140 0.562 0.632 0.179 0.101 bad 0.067 0.214 bad 0.420 bad

XGB

AOD 0.300 0.532 0.356 0.524 lose bad 0.174 0.181 0.585 0.062 bad

Each cell shows the accuracy/bias difference between the original and repaired models. For accuracy, accuracy difference = new accuracy - old accuracy. For bias (DI, SPD, EOD,
AOD), bias difference = old bias - new bias. Thus, a positive value indicates an improvement in bias/accuracy in the repaired model compared to the original and vice versa. For bias,
if a method falls into either the good region (regular numbers) or the win-win region (bold numbers), the bias difference value will be provided. If it falls into any other region, the
region type will be indicated. The values highlighted in blue denote the most effective bug fixing method. The data from this table is divided and analyzed in depth in Tables 3, 4, 6.

Table 3: Proportion of Fair-AutoML, Auto-Sklearn, and mitigation techniques that fall into each mitigation region

Fairness Metric Dataset

DI SPD EOD AOD Adult Census Bank Marketing German Credit TitanicMethod

Lose Bad Inv Good Win Lose Bad Inv Good Win Lose Bad Inv Good Win Lose Bad Inv Good Win Lose Bad Inv Good Win Lose Bad Inv Good Win Lose Bad Inv Good Win Lose Bad Inv Good Win

T1 0% 6% 0% 75%19% 6% 12% 0% 63%19% 18%25% 0% 38%19% 6% 0% 0% 75%19% 0% 12% 0% 63% 25% 25% 0% 0% 75% 0% 6% 13%0%31%50% 0% 19% 0% 81% 0%
T2 0% 0% 0% 81%19% 0% 0% 0% 81%19% 12%13%13%56% 6% 0% 6% 6% 75%13% 0% 0% 12% 75% 13% 12% 13% 6% 50%19% 0% 6% 0%69%25% 0% 6% 0% 94% 0%
T3 6% 0% 0% 63%31% 6% 0% 6% 63%25% 6% 6% 6% 56%26% 6% 6% 6% 56%26% 0% 0% 0% 75% 25% 0% 12% 19%13%56% 19% 6% 6%50%19% 0% 6% 0% 94% 0%
T4 0% 0% 0% 75%25% 0% 0% 6% 75%19% 6% 6% 6% 63%19% 6% 0% 0% 69%25% 0% 0% 0% 100% 0% 5% 0% 13%19%63% 6% 0% 0%94% 0% 0% 6% 0% 94% 0%
Avg 2% 2% 0% 73%23% 3% 3% 3% 70%21% 10%13% 6% 53%18% 5% 3% 3% 69%20% 0% 3% 3% 78% 16% 11% 6% 9% 39%35% 8% 6% 2%61%23% 0% 9% 0% 91% 0%

AS 38% 6% 6% 38%12% 44% 6% 13%31% 6% 56% 0% 6% 25%13% 50% 0% 0% 31%19% 13% 0% 19% 44% 24% 88% 0% 0% 12% 0% 38%12%0%50% 0% 50% 0% 6% 25%19%

R 0% 13% 0% 62%25% 0% 31% 0% 44%25% 50% 0% 19%25% 6% 18%38%13%19%12% 13% 0% 6% 62% 19% 19% 6% 19%25%31% 13%25%6%38%18% 25%50% 0% 25% 0%
DIR 13%25% 6% 44%12% 6% 50% 6% 25%13% 50% 0% 13%25%12% 25% 6% 13%44%12% 31% 6% 19% 38% 6% 31% 38% 13%18% 0% 13%25%6%38%18% 19%13% 0% 43%25%
PML 25%38% 6% 12%19% 19%25% 6% 31%19% 13%13% 6% 49%19% 6% 13% 6% 56%19% 44% 6% 25% 25% 0% 0% 50% 0% 50% 0% 0% 25%0%50%25% 19% 6% 0% 25%50%
EO 0% 44% 0% 56% 0% 0% 56% 0% 44% 0% 0% 38% 0% 62% 0% 0% 31% 0% 69% 0% 0% 0% 0% 100% 0% 0% 100% 0% 0% 0% 0% 25%0%75% 0% 0% 44% 0% 56% 0%
FAX 0% 25%19%25%31% 0% 6% 25%44%25% 0% 0% 38%50%12% 6% 6% 0% 38%50% 0% 6% 31% 44% 19% 0% 0% 0% 31%69% 6% 19%0%75% 0% 0% 13%19%38%30%
ROC 6% 38% 0% 56% 0% 0% 50% 0% 50% 0% 25%38%12%25% 0% 0% 88% 0% 12% 0% 19%19% 0% 62% 0% 6% 68% 13%13% 0% 6% 94%0% 0% 0% 0% 31% 0% 69% 0%
Avg 7% 31% 5% 43%14% 4% 36% 6% 40%14% 23%15%14%40% 8% 9% 30% 5% 40%16% 18% 6% 14% 55% 7% 9% 44% 7% 23%17% 6% 36%2%46%10% 11%26% 3% 43%17%

The proportions in this table are determined based on the data presented in Table 2: proportion for fairness metric = # buggy cases of a metric fall into a region / # buggy cases of
that metric, proportion for dataset = # buggy cases fall of a dataset into a region / # buggy cases of that dataset.

its automatic optimization of the best ML model for a given dataset.

We tailoredAuto-Sklearn to better fit our method in two ways: (1) its

search space was restricted to the type of the faulty classifier - for

example, if the faulty classifier is Random Forest, Auto-Sklearn will

only optimize the hyperparameters and identify complementary

components for that specific classifier. (2) The faulty model was

set as the default model for Auto-Sklearn. These modifications are

features of Auto-Sklearn that we utilized.
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Methodology Configuration. We selected an increment value

of U for V of 0.05 to balance the time between V search and model

fixing processes. The user can opt for a more accurate value of V

by decreasing the increment value and using a longer search time.

To conduct search space pruning, we ran Fair-AutoML 10 times (n)

with a 1-hour search time (t) to gather the best ML pipelines [9].

From each run, we collected the top 10 pipelines (k), resulting in

100 models per input. This pre-built search space includes a set of

hyperparameters and the top 3 most frequently used complemen-

tary components (m). We have explored other parameter settings,

but these have proven to provide optimal results.

Evaluation Configuration. We evaluate each tool on each

buggy scenario 10 times using a random re-split of the data based

on a 7:3 train-test split ratio [42]. The runtime for each run of Fair-

AutoML and Auto-Sklearn is approximately one hour [28, 29]. The

mean performance of each method is calculated as the average of

the 10 runs, which is a commonly used practice in the fairness

literature [4, 6, 14]. Our evaluation targets fixing 16 buggy models

for 4 fairness metrics, resulting in a total of 64 buggy cases.

6.2 Effectiveness (RQ1)

We evaluate the effectiveness of Fair-AutoML by comparing it with

Auto-Sklearn and existing bias mitigation techniques based on

Fairea baseline. The comparisons are based on the following rules:

• Rule 1: A model is considered successfully repaired when

its post-mitigation mean accuracy and fairness falls into

win-win/good trade-off regions.

• Rule 2: A model that falls in the win-win region is always

better than one falling into any other region.

• Rule 3: If two models are in the same trade-off region, the

one with lower bias is preferred.

Our comparison rules for bug-fixing performance were estab-

lished based on Fairea and our evaluations. Firstly, we define a

successful bug fix as a fixed model that falls within the win-win

or good trade-off regions, as these regions demonstrate improved

fairness-accuracy trade-offs compared to the baseline in Fairea.

Secondly, when comparing successfully fixed models in different

trade-off regions (win-win versus good), we consider the win-win

models to be superior as they offer improved fairness and accuracy.

Lastly, for models that fall within the same trade-off region, the

one with lower bias is deemed to be better, as our goal is to fix

unfair models. Our evaluations then consider two aspects of the

bug-fixing performance: the number of successful bug fixes and the

number of times a bias mitigation method outperforms others.

6.2.1 Is Fair-AutoML Effective in Fixing Fairness Bugs? The results

presented in Table 4 show that Fair-AutoML was effective in re-

solving 60 out of 64 (94%) fairness bugs, while Auto-Sklearn only

fixed 28 out of 64 (44%) and bias mitigation techniques resolved

up to 44 out of 64 (69%). This indicates that Auto-Sklearn alone

was not effective in reducing bias, however, our methods were suc-

cessful in enhancing AutoML to repair fairness bugs. Moreover,

Fair-AutoML was able to repair more cases than other bias mitiga-

tion techniques, which often resulted in lower accuracy for lower

Table 4: Fair-AutoML (FA) vs bias mitigation methods in

fixing fairness bugs

FA AS R DIR PML EO FAX ROC

# bugs fixed 60 28 35 30 36 37 44 23

# best models 19 4 9 0 10 9 9 3

The results in this table are derived from the data presented in Table 2. The row # bugs
fixed indicates the number of cases where the technique falls into either the win-win
or good trade-off region. The row # best models represents the number of instances

where a bias mitigation technique outperforms all other methods.

bias. This highlights the effectiveness of our approaches in guid-

ing AutoML towards repairing models for better trade-off between

fairness and accuracy compared to the Fairea baseline.

6.2.2 Does Fair-AutoML Outperform Bias Reduction Techniques?

Fair-AutoML demonstrated superior performance in fixing fairness

bugs compared to other bias mitigation techniques. The results

presented in Table 4 indicate that 63 out of 64 buggy cases were

fixed by Fair-AutoML, Auto-Sklearn, or bias mitigation techniques.

Among the repaired buggy cases, Fair-AutoML outperformed other

techniques 19 times (30%). On the other hand, Auto-Sklearn outper-

formed Fair-AutoML and bias mitigation techniques only 4 times

(6%), and bias mitigation techniques outperformed other techniques

10 times at most (16%). This highlights that Fair-AutoML is often

more effective in improving fairness and accuracy simultaneously

or reducing more bias than other bias mitigation techniques.

6.3 Adaptability (RQ2)

To assess the adaptability of Fair-AutoML, we measure the propor-

tions of each evaluated tools that fall into each fairness-accuracy

trade-off region in different categories: fairness metric and dataset

(Table 3). To further evaluate the adaptability of Fair-AutoML, in-

stead of using our prepared models and datasets, we used the bench-

mark [59] of Parfait-ML to evaluate Fair-AutoML. Particularly, we

evaluate Fair-AutoML and Parfait-ML on three different ML models

(Decision Tree, Logistic Regression, Random Forest) on two datasets

(Adult Census and COMPAS) (Table 5 and Figure 3).

6.3.1 Is Fair-AutoML More Adaptable Than Existing Bias Mitigation

Techniques and Auto-Sklearn? Table 3 shows Fair-AutoML demon-

strates exceptional repair capabilities across various datasets and

fairness metrics, with a high rate of success in fixing buggy models.

For example, in the Adult Census, Bank Marketing, German Credit,

and Titanic datasets, Fair-AutoML (T4) repaired 100%, 82%, 94%, and

94% of the models, respectively. Similarly, in the DI, SPD, EOD, and

AOD fairness metrics, Fair-AutoML (T4) achieved repair rates of

100%, 94%, 82%, and 94%. On the other hand, bias mitigation meth-

ods often show inconsistent results. For instance, Equalized Odds

repaired all buggy cases inAdult Census but none in BankMarketing.

In fact, our methods effectively guides AutoML in hyperparameter

tuning to reduce bias, leading to superior repair performance across

different datasets and metrics.

6.3.2 Is Fair-AutoML Effective in Fixing Fairness Bugs on Other Bias

Mitigation Methods Benchmark? Based on evaluation of Parfait-

ML [60], we only use accuracy and EOD as evaluation metrics

for this evaluation. To make a fair comparison with Parfait-ML,

we utilize the version of Fair-AutoML that incorporates EOD and

accuracy as its cost function (T3). The results are displayed in

Table 5, showcasing the accuracy and bias (EOD) achieved by both
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Table 5: Accuracy and fairness achieved by Fair-AutoML and

Pafait-ML on Pafait-ML’s benchmark

Data
Decision Tree Logistic Regression Random Forest
T3 PML T3 PML T3 PML

Acc EOD Acc EOD Acc EOD Acc EOD Acc EOD Acc EOD

Adult 0.847 0.036 0.817 0.002 0.818 0.038 0.803 0.023 0.851 0.032 0.843 0.039

Compas 0.969 0.000 0.970 0.000 0.970 0.000 0.968 0.000 0.970 0.000 0.970 0.000

Figure 3: Accuracy and fairness achieved by Fair-AutoML

(green circle) and Pafait-ML (orange circle) with Decision

Tree (left) and logistic regression (right) on Adult dataset

(Pafait-ML’s benchmark). The blue line shows the Fairea

baseline and red lines define the trade-off regions.

Fair-AutoML (T3) and Parfait-ML in Parfait-ML’s benchmark. The

table showcases the actual results of the repaired models, rather

than the difference in accuracy/fairness between the original and

repaired models. Upon inspection, the results for the COMPAS

dataset for both Fair-AutoML and Parfait-ML are similar. However,

for the Adult dataset, some differences arise. For instance, with

the Random Forest classifier, Fair-AutoML performs better than

Parfait-ML in both accuracy and EOD. With the Logistic Regression

classifier, Fair-AutoML achieved a higher accuracy but higher bias

compared to Parfait-ML. Nevertheless, Fair-AutoML falls into the

win-win trade-off region, while Parfait-ML only falls into good

trade-off region (Figure 3). With the Decision Tree classifier, both

Fair-AutoML and Parfait-ML fall into the win-win trade-off region

(Figure 3); however, Parfait-ML performed better since it has lower

bias. These results highlights the generalization capability of Fair-

AutoML to repair various datasets and ML models.

6.4 Ablation Study (RQ3)

We create an ablation study to observe the efficiency of the dynamic

optimization function and the search space pruning separately. The

ablation study compares the performance of the following tools:

• Auto-Sklearn (AS) represents AutoML.

• Fair-AutoML version 1 (FAv1) represents AutoML + dynamic

optimization function.

• Fair-AutoML version 2 (FAv2) represents AutoML + dynamic

optimization function + search space pruning.

To evaluate the efficiency of the dynamic optimization function,

we compare the performance of FAv1 with Auto-Sklearn. We com-

pare FAv1 with FAv2 to observe the efficiency of the search space

pruning approach. The complete result is shown in Table 6. Notice

that we use Fair-AutoML to optimize different fairness metrics; thus,

we only consider the metric that each tool tries to optimize. For

instance, the results of Random Forest on Adult dataset in the Table

6 shows that achieved scores of 0.096 for DI, 0.014 for SPD, 0.024 for

EOD, and 0.035 for AOD. This result means that T1 achieves 0.096

for DI, T2 achieves 0.014 for SPD, T3 achieves 0.024 for EOD, T4

achieves 0.035 for AOD. The evaluation only considers cases where

Table 6: Trade-off assessment results of Auto-Sklearn, FAv1,

and FAv2

Metric Model AS FAv1 FAv2 Model AS FAv1 FAv2

DI 0.058 0.119 0.096 0.04 0.094 0.19
SPD 0.016 0.053 0.024 0.005 0.041 0.075
EOD 0.008 0.015 0.014 lose 0.043 0.044
AOD

RF

0.021 0.025 0.035

LRG

0.039 0.078 0.089
DI 0.004 0.136 0.183 inv bad 0.124
SPD 0.003 0.046 0.074 inv bad 0.055
EOD lose 0.015 0.037 inv 0.02 0.013A

d
u
lt
C
en
su
s

AOD

XGB

0.017 0.049 0.053

GBC

0.018 inv 0.05

DI 0.000 0.663 0.103 lose inv 0.158
SPD lose 0.026 bad lose inv 0.051
EOD lose inv lose lose lose 0.003
AOD

RF

0.016 0.004 0.032

XGB2

lose 0.003 0.027
DI lose inv 0.098 lose 0.014 0.01
SPD lose 0.018 0.062 lose lose 0.028
EOD lose inv 0.011 lose lose invB

an
k
M
ar
k
et
in
g

AOD

XGB1

lose lose 0.046

GBC

lose 0.003 0.025

DI lose bad bad 0.035 0.127 0.109
SPD lose bad 0.052 0.021 0.078 0.092
EOD 0.033 bad 0.045 0.068 0.112 0.101
AOD

RF

lose lose lose

SVC

lose 0.032 0.027
DI bad bad 0.07 0.038 inv 0.112
SPD bad lose 0.065 0.027 0.012 0.075
EOD 0.036 lose 0.073 0.066 0.050 0.085G

er
m
an

C
re
d
it

AOD

XGB

lose lose 0.037

KNN

lose inv 0.034

DI lose 1.04 1.549 0.092 0.447 0.501
SPD lose 0.525 0.571 inv 0.273 0.275
EOD lose 0.386 0.445 0.058 0.184 bad
AOD

RF

0.062 0.577 0.601

GBC

0.058 0.429 0.445
DI 0.086 1.062 0.743 lose 1.205 1.364
SPD 0.063 0.594 0.552 lose 0.314 0.542
EOD lose 0.556 0.557 lose 0.287 0.285

T
it
an
ic

AOD

LRG

0.101 0.651 0.179

XGB

lose 0.441 0.524

The data in Table 6 is created in the same ways as Table 2. For each method in the
good trade-off region and win-win region (bold number), a trade-off measurement
value is given; for other regions the region type is displayed. The values in blue,
orange, and black indicate the top 1, top 2, top 3 bug fixing tools, respectively.

the tools successfully repair the bug. The same rules described in

RQ1 is applied in this evaluation.

6.4.1 Are Dynamic Optimization Function and Search Space Pruning

Effective in Fixing Fairness Bugs? From Table 6, our results show that

the dynamic optimization function approach in Fair-AutoML helps

fix buggy models more efficiently. Comparing the performance

in fixing fairness bugs, FAv1 outperforms Auto-Sklearn 39 times,

whileAuto-Sklearn outperforms FAv1 only 7 times. The search space

pruning approach in Fair-AutoML also contributes to more efficient

bug fixing, as FAv2 outperforms both FAv1 and Auto-Sklearn 46 and

55 times respectively, while FAv1 and Auto-Sklearn only outperform

FAv2 14 and 4 times respectively.

7 DISCUSSION

In this work, we bring particular attention to the fairness-accuracy

tradeoff while mitigating bias in ML models. Many works in the

area only optimize fairness metrics by sacrificing accuracy, and do

not consider the tradeoff rigorously. However, as shown by recent

work [42], trivial mutationmethods can also achieve fairness if accu-

racy is compromised in different magnitudes. Therefore, a rigorous

evaluation method is necessary to demonstrate that the tradeoff is

beneficial. Another limitation of existing tools is not generalizing

over different ML classifiers (e.g., LRG, GBC, RF, XGB), multiple

fairness metrics, and dataset characteristics. To that end, we lever-

aged the recent progress of AutoML in the context and achieved

better tradeoff than SOTA methods. We believe that our approach
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is versatile and can be applied to various ML problems. Particu-

larly, the dynamic optimization function approach remains versatile

across various datasets and models. Furthermore, the search space

pruning approach is refined through pre-constructed database and

a matching mechanism, that capitalizes on diverse datasets stored

in repositories such as OpenML or Kaggle.

We implemented Fair-AutoML on top of Auto-Sklearn to ensure

its wide applicability on ML algorithms. State-of-the-art bias mit-

igation techniques also primarily use classic ML algorithms [6, 7,

15, 16, 19, 60] that are supported by Auto-Sklearn. These models

are more suitable than the DL models since the fairness critical

tasks in prior works commonly use tabular datasets. Should one

desire to explore alternative model types not directly supported

by Auto-Sklearn, they can adopt the general ML model adoption of

Auto-Sklearn [27].

Our approach also outlines several opportunities towards lever-

aging AutoML and search-based software engineering to ensure

fairness in new ML models that are becoming available. First, the

greedy weight identifier algorithm’s performance might suffer for

complex models due to computational costs (Algorithm 1). Sec-

ond, search space pruning quantitatively estimates the similarity

of datasets based on data characteristics. Thus, if we do not have

a dataset similar enough to the input dataset, AutoML may not

perform well. To address this, we plan to regularly update our

database with new datasets. Lastly, constructing suitable search

spaces, particularly for resource-intensive methods like deep learn-

ing, could entail significant computational expenses. Further works

are needed to maximize the versatility and effectiveness of our

approach over novel fairness-critical tasks. One key direction is to

combine Fair-AutoML with other bias mitigation techniques, such

as integrating Fair-AutoML’s model with pre-processing bias miti-

gation methods to enhance overall pipeline fairness. Additionally,

integrating Fair-AutoML with ensemble learning could improve

both performance and fairness by capturing a broader range of

biases and patterns. These directions could significantly amplify

the impact of this work, making Fair-AutoML a potent tool for

promoting fairness and equity in machine learning across various

domains.

8 THREATS TO VALIDITY

Construct Validity. The choice of evaluation metrics and existing

mitigation techniques may pose a threat to our results. We mitigate

this threat by employing a diverse range of metrics and mitiga-

tion methods. First, we have used accuracy and four most recent

and widely-used fairness metrics to evaluate Fair-AutoML and the

state-of-the-art. These metrics have been commonly applied in

the software engineering community [15, 16, 19, 60]. Second, we

demonstrate the superiority of Fair-AutoML over state-of-the-art

methods in different categories: pre-processing, in-processing, and

post-processing, which are most advanced techniques from the SE

and ML communities. For evaluating fairness and applying these

mitigation algorithms except Parfait-ML [60], we have used AIF

360 toolkit. For evaluating Parfait-ML, we have used its original

implementation. We create a baseline using the original Fairea im-

plementation, enabling us to conduct a comprehensive comparison

between our approach and existed mitigation methods. In the fu-

ture, we intend to explore supplementary performance metrics and

extend our analysis to incorporate additional mitigation techniques

for a more comprehensive evaluation.

External Validity. To ensure an equitable comparisonwith cutting-

edge bias mitigation techniques, we leverage a diverse array of

real-world models, datasets, and evaluation scenarios. Particularly,

we utilize a practical benchmark comprising 16 real-world models

thoughtfully curated by prior research [6]. Then, these meticulously

chosen models undergo evaluation using four extensively studied

datasets in the fairness literature [10, 61, 62]. We conducted ex-

periments under identical setups and subsequently validated our

findings [6]. In addition to assessing Fair-AutoML against alter-

native methods within our established settings and benchmarks,

we subject Fair-AutoML to evaluation using the Parfait-ML [60]

benchmark, a leading-edge bias mitigation framework.

Internal Validity. Implementing Fair-AutoML on top of Auto-

Sklearn may introduce a threat to its actual bias mitigation perfor-

mance. In other words, the favorable outcomes achieved by Fair-

AutoML could be attributed to its integration with Auto-Sklearn. To

address this threat, we evaluated Auto-Sklearn on various bench-

marks, comparing its performance with (Fair-AutoML) and without

(Auto-Sklearn) our proposed approaches, to gauge the effectiveness

of Fair-AutoML.

9 CONCLUSION

We present Fair-AutoML, an innovative system that enhances exist-

ing AutoML frameworks to resolve fairness bugs. The core concept

of Fair-AutoML is to optimize the hyperparameters of faulty models

to resolve fairness issues. This system offers two novel technical

contributions: a dynamic optimization function and a search space

pruning approach. The dynamic optimization function dynamically

generates an optimization function based on the input, enabling

AutoML to simultaneously optimize both fairness and accuracy. The

search space pruning approach reduces the size of the search space

based on the input, resulting in faster and more efficient bug repair.

Our experiments show that Fair-AutoML outperforms Auto-Sklearn

and conventional bias mitigation techniques, with a higher rate of

bug repair and a better fairness-accuracy trade-off. In the future,

we plan to expand the capabilities of Fair-AutoML to include deep

learning problems, beyond the scope of the current study.

10 DATA AVAILABILITY

To increase transparency and encourage reproducibility, we have

made our artifact publicly available. All the source code and evalu-

ation data with detailed descriptions can be found here [33].
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