Applying Ant Colony Optimization in Software testing to Generate Prioritized Optimal Path and Test Data

Test data generation

Abstract

Software testing is one of the most important parts of software development lifecycle. Among various types of software testing approaches structural testing is widely used. Structural testing can be improved largely by traversing all possible code paths of the software. Genetic algorithm is the most used search technique to automate path testing and test case generation. Recently, different novel search based optimization techniques such as Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Artificial Immune System (AIS), Particle Swarm Optimization (PSO) have been applied to generate optimal path to complete software coverage. In this paper, ant colony optimization (ACO) based algorithm has been proposed which will generate set of optimal paths and prioritize the paths. Additionally, the approach generates test data sequence within the domain to use as inputs of the generated paths. Proposed approach guarantees full software coverage with minimum redundancy. This paper also demonstrates the proposed approach applying it in a program module.

Publication
In 2nd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT'15)

Related